K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C D E F M K

Bài làm

a) Xét tam giác DMB và tam giác FEM có:

DM = ME ( M là trung điểm của DE )

\(\widehat{DMB}=\widehat{FME}\)( Hai góc đối đỉnh )

BM = MF ( M là trung điểm của BF )

=> Tam giác DMB và tam giác FEM ( c.g.c )

=> BD = FE ( 2 cạnh tương ứng )

b) Vì BD = CE ( giả thiết )

Mà BD = FE ( cmt )

=> CE = FE

=> ÈC cân tại E

=> \(\widehat{ECF}=\widehat{EFC}\)( Hai góc ở đáy )

c) Tự làm

# Học tốt #

a: \(\widehat{HAB}=90^0-60^0=30^0\)

b: Xét ΔAHI và ΔADI có

AH=AD

HI=DI

AI chung

Do đó: ΔAHI=ΔADI

Ta có: ΔAHD cân tại A

mà AI là đường trung tuyến

nên AI là đường cao

c: Xét ΔAHK và ΔADK có

AH=AD

\(\widehat{HAK}=\widehat{DAK}\)

AK chung

Do đó: ΔAHK=ΔADK

Suy ra: \(\widehat{AHK}=\widehat{ADK}=90^0\)

=>DK//AB

Xét ΔABI có MK//BI

nên MK/BI=AK/AI

=>MK/CI=AK/AI(1)

Xét ΔACI có NK//IC

nên NK/IC=AK/AI(2)

Từ (1) và (2) suy ra MK=KN

hay K là trung điểm của MN

AH
Akai Haruma
Giáo viên
12 tháng 9 2018

Lời giải:

Xét tam giác $ABM$ có $E,I,D$ thẳng hàng, áp dụng định lý Menelaus ta có:

\(\frac{AE}{EB}.\frac{IB}{IM}.\frac{DM}{DA}=1\Rightarrow \frac{AE}{EB}.=\frac{DA}{DM}\) (do \(IB=IM\) )

Xét tam giác $ACM$ và $F,K, D$ thẳng hàng, áp dụng định lý Menelaus có:

\(\frac{AF}{CF}.\frac{KC}{KM}.\frac{DM}{DA}=1\Rightarrow \frac{AF}{CF}=\frac{DA}{DM}\) (do $KC=KM$)

Do đó: \(\frac{AE}{EB}=\frac{AF}{CF}\Rightarrow EF\parallel BC(1)\) theo định lý Ta-let đảo

Mặt khác xét tam giác $MBC$ có \(\frac{MI}{IB}=\frac{MK}{KC}=1\Rightarrow IK\parallel BC(2)\) theo định lý Talet đảo

Từ \((1);(2)\Rightarrow EF\parallel IK\) (đpcm)

AH
Akai Haruma
Giáo viên
12 tháng 9 2018

Hình vẽ:

Violympic toán 9

24 tháng 10 2014

a) DEBF là hình bình hành vì   EB=DF và // với nhau

 

b) do 2 tam giác CAB và ACD bằng nhau

có  AC (chung) . 2 đường chéo AC và BD nên O là trung điểm của AC

E,  F là trung đểm của AB và CD nên 3 điểm FOF thẳng hàng

ta lại có OE và OF là đường trubg bình của 2 tam giác bằng nhau như ở trên

=> OE=OF => đối xứng qua O

c) do DEvaf BF // nên EM // FN

ta lại có 2 tam giác AME= FNC vì các  góc A=C; E=F (do các cặp góc so le bằng nhau)

=> EM=FN  => EM // FN

vaayjEMFN là hình bình hành