Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=5+52+53+....+52004
5S=52+53+54+...+52005
5S-S=(52+53+54+...+52005)-(5+52+53+....+52004)
4S=52004-5
S=(52004-5):4
tự làm tiếp
c/m: 10^n + 18n - 1 chia hết cho 27
10^n + 18n - 1= (10^n - 1) + 18n
10^n -1: vs n=2 10^2-1=99 (2 chữ số 9)
vs n=3 10^3-1=999 (3 chữ số 9)
10^n -1=99...9(n chữ số 9)
10^n -1 - 18n=99...9 + 18n
=9(11...1 + 2n) (11....1 có n chữ số 1)
=[9x3(11...1 + 2n)]/3 (Nhân 3 rồi chia cho 3)
=27[(11...1 + 2n)]/3]
Vậy ta cần chứng minh 11...1 + 2n chia hết cho 3 thì biểu thức trên sẽ chia hết cho 27
dấu hiệu của 1 số chia hết cho 3 là tổng các số trong số đó sẽ chia hết cho 3
Xét số 11...1=1+1+...+1 (n chữ số 1)
vs n=2 =>1+1=2=n
n=3 =>1+1+1=3=n
vậy tổng các chữ số của 11...1=1+1+...+1=n (n chữ số 1)
=>11...1+2n có tổng các chữ số =n+2n=3n hiển nhiên chia hết cho 3 (đpcm)
S=(5+52+53+54)+(55+56+57+58)+...........+(52009+52010+52011+52012)
=780+54(5+52+53+54)+...........+52008(5+52+53+54)
=65*12 + 54*65*12 + .......... + 52008*65*12
=65*12(1+54+...+52008) chia hết cho 65
=> S chia hết cho 65
nhóm (5+52+53) lại rồi tiếp tục nhóm các số còn lại như vậy ta sẽ có thừa số chung là 31 và chia hết cho 31
đầy đủ S= (5+52+53)+ .....+( 52014+52015+52016)
= 5( 1+5+52)+.....+52014( 1+5+52)
= (5+...+52014 ) ( 1+5+52)
= (5+...+52014)31 chia hết cho 31
S = 5 + 52 + 53 + 54 +.........+ 52016
S = ( 5 + 52 + 53 )+( 54 + 55 + 56 )+...........+ ( 52014 + 52015 +5 2016)
S = 5 * (1+ 5 +52 )+ 54 * (1+5+52) + .........+ 52014 * (1 + 5 + 52 )
S = 5 * 31 + 54 * 31 + .........+ 22014 * 31
S = 31 * (5 + 54 + .........+ 52014 )
Vì trong tích có thừa số chia hết cho 31 nên tích đó chia hết cho 31
\(S=5+5^2+5^3+5^4+...+5^{2022}\\ =\left(5+5^2\right)+5^2.\left(5+5^2\right)+...+5^{2020}.\left(5+5^2\right)\\ =30+30.5^2+...+30.5^{2020}\\ =30.\left(1+5^2+...+5^{2020}\right)⋮30\)
\(S=5+5^2+5^3+...+5^{2022}\)
\(\Rightarrow S=\left(5+5^2\right)+5^2\left(5+5^2\right)+...+5^{2000}\left(5+5^2\right)\)
\(\Rightarrow S=20+5^2.20+...+5^{2000}.20\)
\(\Rightarrow S=20\left(1+5^2+...+5^{2000}\right)⋮20\)
\(\Rightarrow dpcm\)
C = 5 + 5² + 5³ + ... + 5³⁰
= (5 + 5²) + (5³ + 5⁴) + ... + (5²⁹ + 5³⁰)
= 5.(1 + 5) + 5³.(1 + 5) + ... + 5²⁹.(1 + 5)
= 5.6 + 5³.6 + ... + 5²⁹.6
= 6.(5 + 5³ + ... + 5²⁹) ⋮ 6 (1)
Do C ⋮ 6 ⇒ C ⋮ 2 (2)
Lại có C = (5 + 5²) + (5³ + 5⁴) + ... + (5²⁹ + 5³⁰)
= 30 + 5².(5 + 5²) + ... + 5²⁸.(5 + 5²)
= 30 + 5².30 + ... + 5²⁸.30
= 30.(1 + 5² + ... + 5²⁸)
= 10.3.(1 + 5² + ... + 5²⁸) ⋮ 10 (3)
Từ (1), (2) và (3) suy ra C ⋮ 2; C ⋮ 6; C ⋮ 10
đặt A = tổng trên
A=(5+52)+(53+54)+...+(59+510)
A=5(5+1)+53(1+5)+...+59(1+5)
A=5.6+53.6+...+59.6
A=6.(5+53+...+59) luôn chia hết cho 6
vậy...