Tìm x biết \(\frac{3x-3}{2-5x}+\frac{10}{3}=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow\left(5x-2\right)\left(6x-2\right)=\left(3x+1\right).13\)
\(\Leftrightarrow30x^2-10x-12x+4=39x+13\)
\(\Leftrightarrow30x^2-61x-9=0\)
a/ 2x - 10 - [3x - 14 - (4 - 5x) - 2x] = 2
=> 2x - 10 - (3x - 14 - 4 + 5x - 2x) = 2
=> 2x - 10 - 3x + 14 + 4 - 5x + 2x = 2
=> -4x + 6 = 0
=> -4x = -6
=> x = 3/2
b/ \(\left(\frac{1}{4}x-1\right)+\left(\frac{5}{6}x-2\right)-\left(\frac{3}{8}x+1\right)=4,5\)
\(\Rightarrow\frac{1}{4}x-1+\frac{5}{6}x-2-\frac{3}{8}x-1-\frac{9}{2}=0\)
\(\Rightarrow\frac{17}{24}x-\frac{17}{2}=0\)
\(\Rightarrow\frac{17}{24}x=\frac{17}{2}\)
\(\Rightarrow x=12\)
a) \(\frac{2x+3}{5x+2}=\frac{4x+5}{10x+2}\)
\(\Leftrightarrow\)\(\left(2x+3\right)\left(10x+2\right)=\left(5x+2\right)\left(4x+5\right)\)
\(\Leftrightarrow20x^2+4x+30x+6=20x^2+25x+8x+10\)
\(\Leftrightarrow20x^2-20x^2+4x+30x-25x-8x=10-6\)
\(\Leftrightarrow x=4\)
b) \(\frac{3x-1}{40-5x}=\frac{25-3x}{5x-34}\)
\(\Leftrightarrow\left(3x-1\right)\left(5x-34\right)=\left(40-5x\right)\left(25-3x\right)\)
\(\Leftrightarrow15x^2-102x-5x+34=1000-120x-125x+15x^2\)
\(\Leftrightarrow15x^2-15x^2-102x-5x+120x+125x=1000-34\)
\(\Leftrightarrow138x=966\)
\(\Leftrightarrow x=7\)
a ) \(\frac{2x+3}{5x+2}=\frac{4x+5}{10x+2}\)
\(\left(2x+3\right).\left(10x+2\right)=\left(5x+2\right)\left(4x+5\right)\)
\(20x^2+4x+30x+6=20x^2+25x+8x+10\)
\(4x+30x-25x-8x=10-6\)
\(x=4\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{2x+3}{5x+2}=\frac{4x+5}{10x+2}=\frac{2.\left(2x+3\right)-\left(4x+5\right)}{2.\left(5x+2\right)-\left(10x+2\right)}=\frac{4x+6-4x-5}{10x+4-10x-2}=\frac{1}{2}\)
Suy ra:
\(\frac{2x+3}{5x+2}=\frac{1}{2}\Rightarrow2.\left(2x+3\right)=1.\left(5x+2\right)\Rightarrow4x+6=5x+2\)
\(\Rightarrow x=4\)
f)
$\frac{3x^2-2x}{x^2-1}.\frac{1-x^4}{(2-3x)^3}$
$=\frac{2x-3x^2}{x^2-1}.\frac{x^4-1}{(2-3x)^3}=\frac{x(2-3x)(x^2-1)(x^2+1)}{(x^2-1)(2-3x)^3}$
$=\frac{x(x^2+1)}{(2-3x)^2}$
g)
$\frac{5xy}{2x-3}:\frac{15xy^3}{12-8x}=\frac{5xy}{2x-3}.\frac{12-8x}{15xy^3}$
$=\frac{5xy}{2x-3}.\frac{-4(2x-3)}{15xy^3}=\frac{-4}{3y^2}$
h)
$\frac{x^2+2x}{3x^2-6x+3}:\frac{2x+4}{5x-5}=\frac{x(x+2)}{3(x-1)^2}:\frac{2(x+2)}{5(x-1)}$
$=\frac{x(x+2)}{3(x-1)^2}.\frac{5(x-1)}{2(x+2)}$
$=\frac{5x}{6(x-1)}$
d)
$\frac{x+8}{x^2-16}-\frac{2}{x^2+4x}=\frac{x+8}{(x-4)(x+4)}-\frac{2}{x(x+4)}$
$=\frac{x(x+8)}{x(x-4)(x+4)}-\frac{2(x-4)}{x(x+4)(x-4)}$
$=\frac{x^2+8x-2(x-4)}{x(x+4)(x-4)}=\frac{x^2+6x+8}{x(x+4)(x-4)}$
$=\frac{(x+2)(x+4)}{x(x+4)(x-4)}=\frac{x+2}{x(x-4)}$
e)
$\frac{x^2-49}{2x+1}.\frac{3}{7-x}=\frac{(x-7)(x+7)}{2x+1}.\frac{-3}{x-7}$
$=\frac{-3(x+7)}{2x+1}$
2a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) => \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)
Vậy x,y,z lần lượt là 20; 12; 42
#)Giải :
Bài 2 :
d) Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Rightarrow x=2k;y=3k;z=5k\)
\(\Rightarrow2k.3k.5k=810\)
\(\Rightarrow30k^3=810\)
\(\Rightarrow k^3=3\)
\(\Rightarrow k=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=3\\\frac{y}{3}=3\\\frac{z}{5}=3\end{cases}\Rightarrow\hept{\begin{cases}x=6\\x=9\\x=15\end{cases}}}\)
Vậy x = 6; y = 9; z = 15