K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2023

loading... a) Xét hai tam giác vuông: ∆ABH và ∆DBH có:

BH là cạnh chung

HA = HD (gt)

⇒ ∆ABH = ∆DBH (hai cạnh góc vuông)

⇒ ∠ABH = ∠DBH (hai góc tương ứng)

⇒ BH là tia phân giác của ∠ABD

b) Do ∆ABH = ∆DBH (cmt)

⇒ AB = DB (hai cạnh tương ứng)

Do ∠ABH = ∠DBH (cmt)

⇒ ∠ABC = ∠DBC

Xét ∆ABC và ∆DBC có:

AB = DB (cmt)

∠ABC = ∠DBC (cmt)

AC là cạnh chung

⇒ ∆ABC = ∆DBC (c-g-c)

c) Do ∆ABC = ∆DBC (cmt)

⇒ ∠BAC = ∠BDC = 90⁰ (hai góc tương ứng)

⇒ BD ⊥ CD

a) Xét ΔABH vuông tại H và ΔDBH vuông tại H có

BH chung

HA=HD(gt)

Do đó: ΔABH=ΔDBH(hai cạnh góc vuông)

Suy ra: \(\widehat{ABH}=\widehat{DBH}\)(hai góc tương ứng)

mà tia BH nằm giữa hai tia BA,BD

nên BH là tia phân giác của \(\widehat{ABD}\)(đpcm)

b) Xét ΔACH vuông tại H và ΔDCH vuông tại H có

CH chung

AH=DH(gt)

Do đó: ΔACH=ΔDCH(hai cạnh góc vuông)

Suy ra: CA=CD(hai cạnh tương ứng)

Ta có: ΔABH=ΔDBH(cmt)

nên BA=BD(hai cạnh tương ứng)

Xét ΔABC và ΔDBC có 

BA=BD(cmt)

BC chung

CA=CD(cmt)

Do đó: ΔABC=ΔDBC(c-c-c)

26 tháng 3 2020
  • linhhlin

Đáp án:

 a) Xet tam giac AMB va tam giac DMC co:

AM = DM (gt) 

goc AMB = goc DMC ( vi hai goc doi dinh ) 

CM = BM( vi M la trung diem cua CB) 

=> tam giac AMB = tam giac DMC ( c-g-c ) 

=>goc MAB = goc MCD ( hai goc tuong ung ) 

Ma hai goc nay o vi tri so le trong nen CD //AB

Lai co: goc CAB = 90 do => goc ACB = 90 do

=> CD vuông góc AC(dpcm ) 

26 tháng 3 2020

Đáp án:

 a) Xet tam giac AMB va tam giac DMC co:

AM = DM (gt) 

goc AMB = goc DMC ( vi hai goc doi dinh ) 

CM = BM( vi M la trung diem cua CB) 

=> tam giac AMB = tam giac DMC ( c-g-c ) 

=>goc MAB = goc MCD ( hai goc tuong ung ) 

Ma hai goc nay o vi tri so le trong nen CD //AB

Lai co: goc CAB = 90 do => goc ACB = 90 do

=> CD vuông góc AC(dpcm ) 

  Chúc bạn học tốt !

5 tháng 5 2016

vẽ AH thế nào với BC

7 tháng 5 2018

a) Xét tam giác ABC vuông tại A

có: \(AB^2+AC^2=BC^2\) ( py- ta - go)

Thay số: 6^2 + 8^2 = BC^2

             BC^2          = 100

           => BC           = 10 cm

b) ta có: \(AH\perp BD⋮H\)

HD = HB 

=> AH là đường trung trực của BD ( định lí đường trung trực)

mà \(A\in BD\)

=> AB = AD ( tính chất đường trung trực)

c) Xét tam giác AHB vuông tại H và tam giác EHD vuông tại H

có: HB = HD (gt)

AH = EH ( gt)

\(\Rightarrow\Delta AHB=\Delta EHD\left(cgv-cgv\right)\)

=> góc HAB = góc HED ( 2 góc tương ứng)

mà góc HAB, góc  HED nằm ở vị trí so le trong

\(\Rightarrow AB//ED\)( định lí)

mà \(AB\perp AC⋮A\)(gt)

\(\Rightarrow ED\perp AC\)( định lí)

d) ta có: \(S_{\Delta ABC}=\frac{AB.AC}{2}=\frac{6.8}{2}=\frac{48}{2}=24cm^2\)

mà \(S_{\Delta ABC}=\frac{BC.AH}{2}\)

thay số \(24=\frac{10.AH}{2}=5AH\)

\(\Rightarrow AH=\frac{24}{5}=4,8cm\)

Xét tam giác ABH vuông tại H

có: \(AB^2=BH^2+AH^2\) ( py - ta - go)

thay số: 6^2 = BH^2 + 4,8^2

                 BH^2 = 6^2 - 4,8^2

                BH^2 = 12,96

             => BH = 3,6 cm

mà BH = DH = 3,6 cm ( H thuộc BD) => DH = 3,6 cm

=> BH + DH = BD

thay số: 3,6 + 3,6 = BD

           BD = 7,2 cm 

mà AH = EH = 4,8 cm  ( H thuộc AE) => EH  = 4,8 cm

=> AH + EH = AE

thay số: 4,8 + 4,8 = AE

                 AE = 9,6 cm

=> BD < AE ( 7,2 cm < 9,6 cm )

mk vẽ hình đó ko đc đúng đâu ! thông cảm nha bn !

A B C H D E 6 8

14 tháng 2 2020

Trl

-Bạn công chúa ôri làm đúng r nhé !~

Học tốt 

nhé bạn ~

12 tháng 12 2021

1: Xét ΔCAD có 

CH là đường cao

CH là đường trung tuyến

Do đó: ΔCAD cân tại C

hay CA=CD

12 tháng 12 2021

giúp em khúc 2,3,4 với ạ; tất cả đều cùng 1 bài

1 thì em chưa học đến tam giác cân

13 tháng 3 2018

A D B C H M E

a/ Xét 2 tam giác MDC và MAB có MA=MD (gt), MB=MC (gt), góc DMC=góc AMB (đối đỉnh)

=> tam giác MDC = tam giác MAB

=> Góc CBA=góc BCD (Góc tương ứng)

Xét \(\Delta ABC\)\(\widehat{CBA}+\widehat{ACB}=90^0\)(Tính chất Tam giác vuông)

=> \(\widehat{BCD}+\widehat{ACB}=90^0=\widehat{ACD}\) => \(CD\perp AC\)

b/ Xét 2 tam giác vuông CHE và CHA có: CH (chung); HE=HA (gt); Tam giác vuông tại H

=> \(\Delta CHE=\Delta CHA\)=> CA=CE (2 cạnh tương ứng) => \(\Delta CAE\)cân tại C

2 tháng 3 2022

Áp dụng định lý pitago vào tam giác vuông ABC, có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow BC=\sqrt{6^2+8^2}=\sqrt{100}=10cm\)

b.Xét tam giác vuông ABH và tam giác vuông ADH, có:

HD = HB ( gt )

AH: cạnh chung

Vậy tam giác vuông ABH = tam giác vuông ADH ( 2 cạnh góc vuông )

=> AB = AD ( 2 cạnh tương ứng )