cho parabol (P): \(y=x^2-3x+2\) và đường thẳng d:\(y=mx+2\). tìm m để d tiếp xúc với (P)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Để $(d)$ đi qua $A(-1;-2)$ thì: $-2=-m+n(1)$
Để $(d)$ và $(P)$ tiếp xúc nhau thì PT hoành độ giao điểm:
$\frac{1}{4}x^2-mx-n=0$ có nghiệm duy nhất
Điều này xảy ra khi:
$\Delta=m^2+n=0(2)$
Từ $(1);(2)\Rightarrow m=1$ hoặc $m=-2$
Nếu $m=1$ thì $n=-1$
Nếu $m=-2$ thì $n=-4$
Vậy............
a: Thay x=1 và y=5 vào (d), ta được:
2m+2m-3=5
=>4m-3=5
hay m=2
b: Phương trình hoành độ giao điểm là:
\(x^2-2mx-2m+3=0\)
Để(P) tiếp xúc với (d) thì \(\left(-2m\right)^2-4\left(-2m+3\right)=0\)
\(\Leftrightarrow4m^2+8m-12=0\)
\(\Leftrightarrow\left(m+3\right)\left(m-1\right)=0\)
=>m=-3 hoặc m=1
Phương trình hoành độ giao điểm là:
\(-x^2=2mx+3-m\)
\(\Leftrightarrow-x^2-2mx-3+m=0\)
\(\Delta=4m^2+4\cdot1\cdot\left(m-3\right)=4m^2+4m-12=4m^2+4m+1-13\)
\(\Leftrightarrow\Delta=\left(2m+1\right)^2-13\)
Để (P) tiếp xúc với (d) thì \(\left(2m+1\right)^2=13\)
\(\Leftrightarrow\left[{}\begin{matrix}2m+1=\sqrt{13}\\2m+1=-\sqrt{13}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{\sqrt{13}-1}{2}\\m=\dfrac{-\sqrt{13}-1}{2}\end{matrix}\right.\)
a,
Xét pt hoành độ giao điểm của (P) và (d): \(x^2+2x-2m=0\) (1)
\(\Delta=2^2-4\left(-2m\right)=4+8m\)
Để (d) tiếp xúc (P) thì pt (1) có nghiệm kép \(\Rightarrow\Delta=4+8m=0\)
\(\Rightarrow m=-\dfrac{1}{2}\)
Thay \(m=-\dfrac{1}{2}\) vào (1) \(\Rightarrow x^2+2x+1=0\)
\(\Rightarrow\left(x+1\right)^2=0\) \(\Rightarrow x=-1\)
\(\Rightarrow y=\dfrac{1}{2}\left(-1\right)^2=\dfrac{1}{2}\)
Vậy (d) tiếp xúc (P) khi \(m=-\dfrac{1}{2}\) tại tọa độ \(\left(-1;\dfrac{1}{2}\right)\).
PTHĐGĐ là:
1/2x^2+x-m=0
Δ=1^2-4*1/2*(-m)=1+2m
Để (d) tiếp xúc (P) thì 2m+1=0
=>m=-1/2
=>1/2x^2+x+1/2=0
=>x^2+2x+1=0
=>x=-1
=>y=1/2*(-1)^2=1/2
a, (d) đi qua A(1;5) hay A(1;5) thuộc (d)
<=> \(5=4m-3\Leftrightarrow m=2\)
b, Hoành độ giao điểm (P) ; (d) tm pt
\(x^2-2mx-2m+3=0\)
\(\Delta'=m^2-\left(-2m+3\right)=m^2+2m-3\)
Để (P) tiếp xúc (d) thì pt có nghiệm kép khi
\(m^2+2m-3=0\Leftrightarrow\orbr{\begin{cases}m=1\\m=-3\end{cases}}\)
Phương trình hoành độ giao điểm là:
\(x^2-3x+2=mx+2\)
=>\(x^2-3x+2-mx-2=0\)
=>\(x^2+x\left(-m-3\right)=0\)
\(\Delta=\left(-m-3\right)^2-4\cdot1\cdot1=\left(m+3\right)^2-4=\left(m+3-2\right)\left(m+3+2\right)=\left(m+1\right)\left(m+5\right)\)
Để (P) tiếp xúc với (d) thì Δ=0
=>(m+1)(m+5)=0
=>\(\left[{}\begin{matrix}m+1=0\\m+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=-1\\m=-5\end{matrix}\right.\)