K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2023

Phương trình hoành độ giao điểm là:

\(x^2-3x+2=mx+2\)

=>\(x^2-3x+2-mx-2=0\)

=>\(x^2+x\left(-m-3\right)=0\)

\(\Delta=\left(-m-3\right)^2-4\cdot1\cdot1=\left(m+3\right)^2-4=\left(m+3-2\right)\left(m+3+2\right)=\left(m+1\right)\left(m+5\right)\)

Để (P) tiếp xúc với (d) thì Δ=0

=>(m+1)(m+5)=0

=>\(\left[{}\begin{matrix}m+1=0\\m+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=-1\\m=-5\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
11 tháng 3 2021

Lời giải:

Để $(d)$ đi qua $A(-1;-2)$ thì: $-2=-m+n(1)$

Để $(d)$ và $(P)$ tiếp xúc nhau thì PT hoành độ giao điểm:

$\frac{1}{4}x^2-mx-n=0$ có nghiệm duy nhất

Điều này xảy ra khi:

$\Delta=m^2+n=0(2)$

Từ $(1);(2)\Rightarrow m=1$ hoặc $m=-2$

Nếu $m=1$ thì $n=-1$

Nếu $m=-2$ thì $n=-4$

Vậy............

13 tháng 6 2021

pt hoành độ giao điểm: \(x^2-2mx-2m+3=0\)

Để đường thẳng tiếp xúc với parabol thì pt có 1 nghiệm duy nhất

\(\Rightarrow\Delta'=0\)

\(\Delta'=m^2+2m-3=0\Rightarrow\left(m-1\right)\left(m+3\right)=0\Rightarrow\left[{}\begin{matrix}m=1\\m=-3\end{matrix}\right.\)

a: Thay x=1 và y=5 vào (d), ta được:

2m+2m-3=5

=>4m-3=5

hay m=2

b: Phương trình hoành độ giao điểm là:

\(x^2-2mx-2m+3=0\)

Để(P) tiếp xúc với (d) thì \(\left(-2m\right)^2-4\left(-2m+3\right)=0\)

\(\Leftrightarrow4m^2+8m-12=0\)

\(\Leftrightarrow\left(m+3\right)\left(m-1\right)=0\)

=>m=-3 hoặc m=1

Phương trình hoành độ giao điểm là: 

\(-x^2=2mx+3-m\)

\(\Leftrightarrow-x^2-2mx-3+m=0\)

\(\Delta=4m^2+4\cdot1\cdot\left(m-3\right)=4m^2+4m-12=4m^2+4m+1-13\)

\(\Leftrightarrow\Delta=\left(2m+1\right)^2-13\)

Để (P) tiếp xúc với (d) thì \(\left(2m+1\right)^2=13\)

\(\Leftrightarrow\left[{}\begin{matrix}2m+1=\sqrt{13}\\2m+1=-\sqrt{13}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{\sqrt{13}-1}{2}\\m=\dfrac{-\sqrt{13}-1}{2}\end{matrix}\right.\)

20 tháng 2 2021

Bạn ơi còn tìm toạ độ tiếp điểm nữa mà bạn. Bạn giúp mình được không

30 tháng 4 2023

a, 

Xét pt hoành độ giao điểm của (P) và (d): \(x^2+2x-2m=0\) (1)

\(\Delta=2^2-4\left(-2m\right)=4+8m\)

Để (d) tiếp xúc (P) thì pt (1) có nghiệm kép \(\Rightarrow\Delta=4+8m=0\)

\(\Rightarrow m=-\dfrac{1}{2}\)

Thay \(m=-\dfrac{1}{2}\) vào (1) \(\Rightarrow x^2+2x+1=0\)

\(\Rightarrow\left(x+1\right)^2=0\) \(\Rightarrow x=-1\)

\(\Rightarrow y=\dfrac{1}{2}\left(-1\right)^2=\dfrac{1}{2}\)

Vậy (d) tiếp xúc (P) khi \(m=-\dfrac{1}{2}\) tại tọa độ \(\left(-1;\dfrac{1}{2}\right)\).

 

PTHĐGĐ là:

1/2x^2+x-m=0

Δ=1^2-4*1/2*(-m)=1+2m

Để (d) tiếp xúc (P) thì 2m+1=0

=>m=-1/2

=>1/2x^2+x+1/2=0

=>x^2+2x+1=0

=>x=-1

=>y=1/2*(-1)^2=1/2

26 tháng 3 2022

a, (d) đi qua A(1;5) hay A(1;5) thuộc (d)

<=> \(5=4m-3\Leftrightarrow m=2\)

b, Hoành độ giao điểm (P) ; (d) tm pt 

\(x^2-2mx-2m+3=0\)

\(\Delta'=m^2-\left(-2m+3\right)=m^2+2m-3\)

Để (P) tiếp xúc (d) thì pt có nghiệm kép khi 

\(m^2+2m-3=0\Leftrightarrow\orbr{\begin{cases}m=1\\m=-3\end{cases}}\)