K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2017

Bài 3:

Gán D=0

Nhập : \(D=D+1:A=\frac{\left(3+\sqrt{2}\right)^D-\left(3-\sqrt{2}\right)^D}{2\sqrt{2}}CALC=\)

Ấn = liên tục 

\(D=D+1=1=>U_1=1\)

\(D=D+1=2=>u_2=6\)

\(D=D+1=3=>U_3=29\)

\(D=D+1=4=>U_4=132\)

\(D=D+1=5=>U_5=589\)

Gọi công thức truy hồi dạng tổng quát là :

\(U_{n+2}=aU_{n+1}+bU_n+c\)

\(\hept{\begin{cases}U_3=aU_2+bU_1+c\\U_4=aU_3+bU_2+c\\U_5=aU_4+bU_3+c\end{cases}}\)

\(\hept{\begin{cases}6a+b+c=29\\29a+6b+c=132\\132a+29b+c=589\end{cases}}\)

\(\hept{\begin{cases}a=6\\b=-7\\c=0\end{cases}}\)

Vậy \(U_{n+2}=6U_{n+1}-7U_n\)

9 tháng 8 2017

b) Có Ct truy hồi rời bạn bấm: Alpha A:=6Alpha B-Alpha C:Alpha C=Alpha A-6Alpha B:Alpha B=6Alpha C-Alpha A

                   ==========.......=====

Như vậy là hết quy trình bấm nhé.

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thangBài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thang

Bài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:

a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông 

Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của AC và BD. C/minh EA = EB

Bài 4: Cho ABCD là hình thang ( AB // CD, AB < CD ). Kẻ các đường cao AE,BF của hình thang. C/minh rằng DE = CF 

Bài 5: Cho ABCD là hình thang ( AB // CD ) có DB là đường phân giác góc D và AE là đường phân giác góc A ( E thuộc DC ). Biết AE // BC và O là giao điểm của AE với DB. CMR:

a) AE vuông góc với DB

b) AD // BE và AD = BE

c) E là trung điểm của DC 

d) Xác định dạng của tứ giác BCEO

e) Biết góc BEC = 80 độ. Hãy tính các góc của hình thang ABCD 

1

Bài 4:

Xét ΔAED vuông tại E và ΔBFC vuông tại F có

AD=BC

góc D=góc C

Do đó: ΔAED=ΔBFC

=>DE=CF
Bài 3:

a: Xét ΔADC và ΔBCD có

AD=BC

AC=BD

DC chung

Do đó: ΔADC=ΔBCD

=>góc ACD=góc BDC

b: Ta co: góc ACD=góc BDC

=>góc EAB=góc EBA
=>ΔEAB cân tại E

23 tháng 8 2020

a) Xét 2 tam giác ADB và BCD có:

góc DAB = góc DBC (gt)

góc ABD = góc BDC ( so le trong )

nên tam giác ADB đồng dạng với tam giác BDC.(1)

b) Từ (1) ta được AB/BC = DB/CD = AB/BD

hay ta có; AD/BC = AB/BD <==> 3,5/BC = 2,5/5

==> BC= 3,5*5/2,5 = 7 (cm)

ta cũng có: DB/CD = AB/BD <==> 5/CD = 2,5/5

==> CD = 5*5/2,5 =10 (cm)

c) Từ (1) ta được;

AD/BC = DB/CD = AB/BD hay 3.5/7 = 5/10 = 2,5/5 = 1/2 .

ta nói tam giác ADB đồng giạc với tam giác BCD theo tỉ số đồng dạng là 1/2

mà tỉ số diện tích bằng bình phương tỉ số động dạng

do đó S ADB/ S BCD = (1/2)^2 = 1/4

4 tháng 4 2021

a, Xét △DAB và △CBD có:

∠DAB=∠DCB (= 90 độ), AB//DC => ∠ABD=∠BDC (=60 độ) (so le trong)

=> △DAB ∼ △CBD (g.g)

Ta có: ∠ADB=180 độ - 90 độ - 60 độ = 30 độ

mà ∠ADB=∠DCB => ∠DCB=30 độ (1)

Ta có: ∠BDI=∠CDI= \(\dfrac{60độ}{2}\)= 30 độ (2)

Từ (1), (2) ta có: ∠DCB=∠CDI= 30 độ

=> △IDC cân tại I

 

 

cảm ơn ạ ~

31 tháng 8 2019

Bài 1: ( hình tự vẽ )

Vì \(AD//BC\left(gt\right)\)

\(\Rightarrow\widehat{A}+\widehat{B}=180^0\)( 2 góc trong cùng phía )  mà\(\widehat{A}-\widehat{B}=20^0\left(gt\right)\)

\(\Rightarrow\hept{\begin{cases}\widehat{A}=100^0\\\widehat{B}=80^0\end{cases}}\)

 \(\widehat{D}=2\widehat{B}=2.80^0=160^0\)

Do \(AD//BC\left(gt\right)\)

\(\Rightarrow\widehat{D}+\widehat{C}=180^0\)( 2 góc trong cùng phía )

\(\Rightarrow\widehat{C}=20^0\)

Vậy ...

4 tháng 3 2022

a) -Qua B kẻ đường thẳng vuông góc với DC tại E.

-Xét tứ giác ABED: \(\widehat{ADE}=\widehat{BAD}=\widehat{DEB}=90^0\)

\(\Rightarrow\)ABED là hình chữ nhật nên \(AD=BE\)\(AB=ED=4\left(cm\right)\)

-Xét △BEC vuông tại E:

\(BE^2+EC^2=BC^2\) (định lí Py-ta-go)

\(\Rightarrow BE^2+\left(DC-DE\right)^2=BC^2\)

\(\Rightarrow BE^2+\left(9-4\right)^2=13^2\)

\(\Rightarrow BE^2=13^2-5^2=144\)

\(\Rightarrow BE=AD=12\left(cm\right)\)

b) \(S_{ABCD}=\dfrac{AD.\left(AB+CD\right)}{2}=\dfrac{12.\left(4+9\right)}{2}=78\left(cm^2\right)\)

c) -Đề sai.