Tìm X:
\(\frac{121}{27}\)x \(\frac{54}{11}\)< X< \(\frac{100}{21}\): \(\frac{25}{126}\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) X = 15
b) X = 4
c ) X= 23
d) X= 11
( Chỉ là ý kiến riêng thôi nhé, nhận gạch đá )
a) \(\frac{6+x}{33}=\frac{7}{11}\)
=> (6 + x). 11 = 33.7
=> 66 + 11x = 231
=> 11x = 231 - 66
=> 11x = 165
=> x = 165 : 11
=> x = 15
b) 15/26 + x/13 = 46/52
=> x/13 = 23/26 - 15/26
=> x/13 = 4/13
=> x = 4
c) 121/27 x 54/11 < x < 100/21 : 25/126
=> 22 < x < 24
=> x = 23 (vì x là số tự nhiên)
d) 1 < 11/x < 12
=> 11/x \(\in\){2; 3; 4 ; ...; 11}
=> x \(\in\) {11/2; 11/3; ...; 1}
Vì x là số tự nhiên => x = 1
Ta có: \(\frac{54}{11}.\frac{121}{27}< n< \frac{100}{21}:\frac{25}{126}\)
\(\Rightarrow\frac{2.11}{1.1}< n< \frac{100}{21}.\frac{126}{25}\)
\(\Rightarrow22< n< 24\)
\(\Rightarrow n=23\)
Ta có:
\(\frac{54}{11}\cdot\frac{121}{27}=\frac{54\cdot121}{11\cdot27}=22\)
\(\frac{100}{21}:\frac{25}{126}=\frac{100}{21}\cdot\frac{126}{25}=\frac{100\cdot126}{21\cdot25}=24\)
\(\Rightarrow22< n< 24\)
\(\Rightarrow x=23\)
\(\frac{121}{27}\times\frac{54}{1}\)< N < \(\frac{100}{21}:\frac{25}{126}\)
\(242\) < N < 24
=> Không tồn tại số tự nhiên N.
1, Tính tổng:
\(C=\frac{5}{7}\cdot\frac{5}{11}+\frac{5}{7}\cdot\frac{2}{11}-\frac{5}{7}\cdot\frac{14}{11}\)
\(=\frac{5}{7}\cdot\left(\frac{5}{11}+\frac{2}{11}-\frac{14}{11}\right)=\frac{5}{7}\cdot\frac{-7}{11}=\frac{-5}{11}\)
2, Tìm x:
\(x+\frac{5}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+...+\frac{4}{41\cdot45}=\frac{-37}{45}\)
\(\Rightarrow x+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+...+\frac{1}{41}-\frac{1}{45}=\frac{-37}{45}\)
\(\Rightarrow x+\frac{1}{5}-\frac{1}{45}=\frac{-37}{45}\Rightarrow x+\frac{9}{45}-\frac{1}{45}=\frac{-37}{45}\)
\(\Rightarrow x+\frac{8}{45}=\frac{-37}{45}\Rightarrow x=\frac{-37}{45}-\frac{8}{45}=\frac{-45}{45}=-1\)
- Các bài tìm x còn lại bạn cứ theo trình tự thực hiện phép tính mà làm nhé!
\(C=\frac{5}{7}\cdot\frac{5}{11}+\frac{5}{7}\cdot\frac{2}{11}-\frac{5}{7}\cdot\frac{14}{11}\)
\(=\frac{5}{7}\cdot\left(\frac{5}{11}+\frac{2}{11}-\frac{14}{11}\right)\)
\(=\frac{5}{7}\cdot-\frac{7}{11}\)
\(=-\frac{5}{11}\)
a) \(x-\frac{10}{3}=\frac{7}{15}\cdot\frac{3}{5}\) b) \(x+\frac{3}{22}=\frac{27}{121}\cdot\frac{11}{9}\)
\(\Leftrightarrow x-\frac{10}{3}=\frac{7}{25}\) \(\Leftrightarrow x+\frac{3}{22}=\frac{3}{11}\)
\(\Rightarrow x=\frac{7}{25}+\frac{10}{3}\) \(\Rightarrow x=\frac{3}{11}-\frac{3}{22}\)
\(x=\frac{271}{75}\) \(x=\frac{3}{22}\)
c) \(\frac{8}{23}.\frac{46}{24}-x=\frac{1}{3}\) d) \(1-x=\frac{49}{65}.\frac{5}{7}\)
\(\Leftrightarrow\frac{2}{3}-x=\frac{1}{3}\) \(\Leftrightarrow1-x=\frac{7}{13}\)
\(\Rightarrow x=\frac{2}{3}-\frac{1}{3}\) \(\Rightarrow x=1-\frac{7}{13}\)
\(x=\frac{1}{3}\) \(x=\frac{6}{13}\)
\(a.\frac{121}{27}\times\frac{54}{11}< n< \frac{100}{21}\div\frac{25}{126}\)
\(22< n< 24\)
\(\Rightarrow n=23.\)
\(\frac{121}{27}\times\frac{54}{11}< x< \frac{100}{21}\times\frac{126}{25}\)
\(22< x< 24\)