rút gọn : 3(x+1)-2/3+x/
ai nhanh mk sẽ tk !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3\left(x+1\right)-2\left|3+x\right|\)
*)\(=3\left(x+1\right)-2\left(3+x\right)\)
\(=3x+3-6-2x\)
\(=x-3\)(với \(x\ge-3\))
*) \(=3\left(x+1\right)-2\left|3+x\right|\)
\(=3x+3-2\left(-x-3\right)\)
\(=3x+3+2x+6\)
\(=5x+9\)(với \(x\le-3\))
\(\frac{4}{3}B=-1+\frac{3}{4}-\left(\frac{3}{4}\right)^2+...+\left(\frac{3}{4}\right)^{99}\)
\(B=-\frac{3}{4}+\left(\frac{3}{4}\right)^2-\left(\frac{3}{4}\right)^3+...+\left(\frac{3}{4}\right)^{100}\)
\(\Rightarrow\)\(\frac{7}{3}B=-1+\left(\frac{3}{4}\right)^{100}\Rightarrow B=\frac{\left(\frac{3}{4}\right)^{100}-1}{\frac{7}{3}}=\frac{3\left[\left(\frac{3}{4}\right)^{100}-1\right]}{7}\)
Như vầy đủ gọn chưa bạn?
/x+1/+/x+2/+/x+3/+/x+4/
=(x+1)(x+2)(x+3)(x+4)
=(x+x+..+x)(1+2+3+4)
số số hạng của tổng là
(4-1):1+1=4
tổng của dãy là
(1+4).4:2=10
=>4x.10=0
=>4x=0=>x=0
Tờ làm luôn, ko ghi đề nữa nhé
\(A=\frac{\frac{24}{12}-\frac{4}{12}+\frac{3}{12}}{\frac{24}{12}+\frac{2}{12}-\frac{3}{12}}\)
\(A=\frac{\frac{23}{12}}{\frac{23}{12}}=1\)
Vậy A=1
\(A=\frac{2-\frac{1}{3}+\frac{1}{4}}{2+\frac{1}{6}-\frac{1}{4}}\)\(=\frac{2-\frac{2}{6}+\frac{2}{8}}{2+\frac{2}{12}-\frac{2}{8}}\)\(=\frac{2\left(1-\frac{1}{6}+\frac{1}{8}\right)}{-2\left(1-\frac{1}{12}+\frac{1}{8}\right)}\)\(=-1\)
\(=x^6-6x^4+12x^2-8-x^3+x+6x^2-18x\\ =x^6-6x^4-x^3+18x^2-17x-8\)
\(=\left(x-\dfrac{1}{3}\right)\left(\dfrac{4}{3}x+\dfrac{1}{9}-x+\dfrac{1}{3}\right)\\ =\left(x-\dfrac{1}{3}\right)\left(\dfrac{1}{3}x+\dfrac{4}{9}\right)\\ =\dfrac{1}{3}x^2+\dfrac{4}{9}x-\dfrac{1}{9}x-\dfrac{4}{27}\\ =\dfrac{1}{3}x^2+\dfrac{1}{3}x-\dfrac{4}{27}\)
Ta có GTTĐ luôn lớn hơn hoặc bằng 0, mà theo đề bài
=> +) x + y - 1 = 0
x + y = 1
=> +) x - y - 2 = 0
x - y = 2
Số x là : ( 2 + 1 ) : 2 = 3/2
Số y là : ( 2 - 1 ) : 2 = 1/2
Vậy,.........
\(\left|x-\frac{1}{3}\right|+\frac{1}{2}=1\) (1)
Ta có \(\left|x-\frac{1}{3}\right|=\hept{\begin{cases}x-\frac{1}{3}\Leftrightarrow x>\frac{1}{3}\\\frac{1}{3}-x\Leftrightarrow x< \frac{1}{3}\end{cases}}\)
với \(x>\frac{1}{3}\)thì (1) <=>\(x-\frac{1}{3}+\frac{1}{2}=1\)
\(\Leftrightarrow x=\frac{5}{6}\)(thoả mãn ĐK)
Với \(x< \frac{1}{3}\)thì (1)<=> \(\frac{1}{3}-x+\frac{1}{2}=1\)
\(\Leftrightarrow x=-\frac{1}{6}\)(TMĐK)