bài 1 tìm số nguyên dương x y biết xy+4y-5y =25
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xy - 5y = 13
y . ( x - 5 ) = 13
Lập bảng ta có :
x-5 | 13 | 1 | -13 | -1 |
x | 18 | 6 | -8 | 4 |
y | 1 | 13 | -1 | -13 |
Vậy ( x ; y ) = ( 18 ; 1 ) = ( 6 ; 13 ) = ( -8 ; -1 ) = ( 4 ; -13 )
a,xy-5y=13
=> y[x-5] = 13
Ta có bảng:
y | 1 | 13 | -1 | -13 |
x-5 | 13 | 1 | -13 | -1 |
x | 18 | 6 | -8 | 4 |
Vậy [x,y] = [1,18],[13,6],[-1,-8],[-13,4]
b, 3x-xy - 4y = 16
x[3-y] - 4y = 16
x[3-y] - 4[3-y] = -4
=> x - 4 = -4
=> x = 0
May ngu
Tao lv 121 lc 100k ma moi v1
TaoTM
XIn loi ban minh len con dong kinh
a) xy-x-y=3
x(y-1)-(y-1)=4
y-1 | -4 | -2 | -1 | 1 | 2 | 4 |
x-1 | -1 | -2 | -4 | 4 | 2 | 1 |
y | -3 | -1 | 0 | 2 | 3 | 5 |
x | 0 | -1 | -3 | 5 | 3 | 2 |
vậy (x,y)=(-3,0);(-1,-1);(0,-3);(2,5);(3,3);(5,2)
Bài 2: Giả sử tồn tại x,y nguyên dương t/m đề, khi đó pt cho tương đương:
\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x+3\right)^2+\left(2y+3\right)^2=18\)
Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x+3=3\\2y+3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=0\end{cases}}\)
Vậy cặp nghiệm nguyên t/m pt là (x;y) = (0;0)
Làm lại bài 2 :v (P/S: Bạn bỏ bài kia đi nhé)
\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x-3\right)^2+\left(2y-3\right)^2=18\)
Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x-3=3\\2y-3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=3\end{cases}}\)
Vậy (x;y) = (3;3)
9xy+3x+3y=51 (x, y thuộc Z; x, y>0)
<=> 9xy+3x+3y+1=52
<=> 3x(3y+1)+(3y+1)=52
<=> (3y+1)(3x+1)=52=13.4=26.2=1.52
Vif x, y >0 => (3y+1)>1 và (3x+1) >1
TH1: 3y+1 =13 và 3x+1=4 => y=4 và x=1 (nhận)
TH2: 3y +1 =26 và 3x+1=2 => y=25/3 và x=1/3 (loại)
Với x, y có thể đổi chỗ cho nhau trong phương trình trên.
Vậy (x;y)=(1;4) và (4;1)
x^2 - 25 = y(y + 6)
<> x^2 - 25 + 9 = y^2 + 6y + 9
<> x^2 - 16 = (y + 3)^2
<> x^2 - (y + 3)^2 = 16
<>(x - y - 3)(x + y +3) = 16
vi x,y nguyên nên xay ra các trường hợp sau
+ x - y - 3 = 16 và x + y + 3 = 1 giải hệ này loại
+ x - y -3 = 8 và x + y + 3 = 2
<>x = 5 và y = -6
tương tự
..
Lời giải:
$xy+4y-5y=25$
$\Rightarrow xy-y=25$
$\Rightarrow y(x-1)=25$
Do $x,y$ là các số nguyên nên $y; x-1$ cũng là số nguyên.
Ta có các TH sau:
TH1: $y=1; x-1=25\Rightarrow y=1; x=26$
TH2: $y=-1; x-1=-25\Rightarrow y=-1; x=-24$
TH3: $y=5; x-1=5\Rightarrow y=5; x=6$
TH4: $y=-5; x-1=-5\Rightarrow y=-5; x=-4$
TH5: $y=25; x-1=1\Rightarrow y=25; x=2$
TH6: $y=-25; x-1=-1\Rightarrow y=-25; x=0$