Tìm x biết : \(27^5.3^x=9^{10}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 5x + 1 - 2.5x = 75
<=> 5x.5 - 2.5x = 75
<=> 5x.3 = 75
<=> 5x = 25
<=> 5x = 52
<=> x = 2
Vậy x = 2
b) 9x + 1 - 5.32x = 324
<=> (32)x + 1 - 5.32x = 324
<=> 32x + 2 - 5.32x = 324
<=> 32x.32 - 5.32x = 324
<=> 32x . 4 = 324
<=> 32x = 81
<=> 32x = 34
<=> 2x = 4
<=> x = 2
Vậy x = 2
\(9^{x+1}-5.3^{2x}=324=>9^x.9-5.\left(3^2\right)^x=324=>\left(3^2\right)^x.9-5.\left(3^2\right)^x=324\)
\(=>3^{2x}.\left(9-5\right)=324=>3^{2x}=\frac{324}{4}=81=3^4=>2x=4=>x=2\)
vậy x=2
tick nhé
Theo đề ta có:
\(5.3^{3x+2}-27^{x+1}=486\)
\(\Rightarrow5.27^x.9-27^x.27=486\)
\(\Rightarrow27^x\left(45-27\right)=486\)
\(\Rightarrow27^x.18=486\)
\(\Rightarrow27^x=\frac{486}{18}\)
\(\Rightarrow27^x=27\)
\(\Rightarrow27^x=27^1\)
\(\Rightarrow x=1\)
vậy \(x=1\)
Lời giải:
Gọi biểu thức là $A$
\(A=\frac{2^{10}.3^8+5.(2^2)^5.3^8}{2^{10}.(3^3)^3-2^{10}.(3^2)^4}=\frac{2^{10}.3^8+5.2^{10}.3^8}{2^{10}.3^9-2^{10}.3^{8}}\)
\(=\frac{2^{10}.3^8(1+5)}{2^{10}.3^8(3-1)}=\frac{6}{2}=3\)
Giang ho dai ca viet nham nhé:
\(5.3^x=8.3^9+7.27^3\)
<=> \(5.3^x=8.3^9+7.\left(3^3\right)^3\) <=> \(5.3^x=8.3^9+7.3^9\)
<=> \(5.3^x=15.3^9\) <=> \(3^x=3.3^9=3^{10}\) => x = 10
nhầm chỉnh lại :
\(5.3^x=8.3^9+7.27^3\Rightarrow5.3^x=8.3^9+7.3^9=15.3^9\Rightarrow15.3^{x-1}=15.3^9\Rightarrow3^{x-1}=3^9\Rightarrow x-1=9\Rightarrow x=10\)
a)5x+5x+2=650
\(\Rightarrow5^x\left(1+5^2\right)=650\)
\(\Rightarrow5^x\cdot26=650\)
\(\Rightarrow5^x=25\)
\(\Rightarrow5^x=5^2\)
\(\Rightarrow x=2\)
b)\(3^{x-1}+5\cdot3^{x-1}=162\)
\(\Rightarrow3^{x-1}\cdot\left(1+5\right)=162\)
\(\Rightarrow3^{x-1}\cdot6=162\)
\(\Rightarrow3^{x-1}=27\)
\(\Rightarrow3^{x-1}=3^3\)
\(\Rightarrow x-1=3\)
\(\Rightarrow x=4\)
\(3^{15}.3^x=3^{20}\)
\(3^{15+x}=3^{20}\)
\(\Rightarrow15+x=20\)
\(x=5\)
275 . 3x = 910
=> 3x = 910 : 275
=> 3x = 92.5 : 275
=> 3x = ( 92)5 : 275
=> 3x = 815 : 275
=> 3x = 35
=> x = 5
Vậy x = 5