cho hai số nguyên tố a,b>3 , biết b=a+2 . CMR a+b chia hết cho 12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Vì $a,b$ là hai số nguyên tố lớn hơn 2 nên $a,b$ đều là số lẻ.
$\Rightarrow a+b$ chẵn
$\Rightarrow a+b\vdots 2$
2.
Theo đề ra $n-7\vdots 10; n-9\vdots 12$
$\Rightarrow n-7+10\vdots 10; n-9+12\vdots 12$
$\Rightarrow n+3\vdots 10; n+3\vdots 12$
$\Rightarrow n+3=BC(10,12)$
Để $n$ nhỏ nhất thì $n+3=BCNN(10,12)$
$\Rightarrow n+3=60$
$\Rightarrow n=57$
1, a và a+2 là số nguyên tố => a , a+2 đều là số lẻ => a+1 là số chẵn => a+1 chia hết cho 2 (1)
2. a và a+2 là số nguyên tố nên không chia hết cho 3
+Nếu a chia 3 dư 1 thì a+2 chia hết cho 3 (loại)
+Nếu a chia 3 dư 2 thì a+2 chia 3 dư 1 (nhận) => a+1 chia hết cho 3 (2)
Từ (1) và (2) suy ra a+1 chia hết cho 6
m.n/(m^2+n^2 ) và m.n/2018
- Đặt (m,n)=d => m= da;n=db ; (a,b)=1
=> d^2(a^2+b^2)/(d^2(ab)) = (a^2+b^2)/(ab) => b/a ; a/b => a=b=> m=n=> ( 2n^2+2018)/n^2 =2 + 2018/n^2 => n^2/2018
=> m=n=1 ; lẻ và nguyên tố cùng nhau. vì d=1
Vẽ SH _I_ (ABCD) => H là trung điểm AD => CD _I_ (SAD)
Vẽ HK _I_ SD ( K thuộc SD) => CD _I_ HK => HK _I_ (SCD)
Vẽ AE _I_ SD ( E thuộc SD).
Ta có S(ABCD) = 2a² => SH = 3V(S.ABCD)/S(ABCD) = 3(4a³/3)/(2a²) = 2a
1/HK² = 1/SH² + 1/DH² = 1/4a² + 1/(a²/2) = 9/4a² => HK = 2a/3
Do AB//CD => AB//(SCD) => khoảng cách từ B đến (SCD) = khoảng cách từ A đến (SCD) = AE = 2HK = 4a/3