Một hình chữ nhật có chiều dài hơn chiều rộng 5m . Nếu tăng chiều dài 6m và giảm chiều rộng 2m thì diên tích tăng thêm 18m2. Tính diện tích hình chữ nhật
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chiều dài | chiều rộng | |
lúc đầu | x | x-5 |
lúc sau | x+6 | x-5-2 |
Gọi chiều dài và chiều rộng lần lượt là x và y(x>17; x>y)
VÌ chiều dài hơn chiều rộng 17m nên ta có PT: x-y=17 (1)
Nếu tăng chiều dài thêm 6m, giảm chiều rộng đi 5m thì diện tích mới kém diện tích cũ 100m2 nên ta có PT:
xy-(x+6)(y-5)=100
⇔xy-xy+5x-6y+30=100
⇔5x-6y=70 (2)
Từ (1) và (2) ta có HPT: \(\left\{{}\begin{matrix}x-y=17\\5x-6y=70\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=32\\y=15\end{matrix}\right.\) (TM)
Vậy chiều dài và chiều rộng lần lượt là 32m và 15m
Gọi chiều dài hình chữ nhật là x (m)
(ĐK: x ∈ N*)
Chiều rộng hình chữ nhật là x-17 (m)
Nếu tăng chiều dài 6m và giảm chiều rộng 5m thì diện tích mới kém diện tích cũ 100m2 nên ta có pt:
\(x\left(x-17\right)-\left(x+6\right)\left(x-22\right)=100\\ \Leftrightarrow x^2-17x-x^2+16x+132=100\\ \Leftrightarrow-x=-32\\ \Leftrightarrow x=32\left(tmđk\right)\)
Vậy chiều dài và chiều rộng của hình chữ nhật lần lượt là 32m và 15m
Gọi \(x,y\left(x,y>0\right)\) là chiều dài, chiều rộng của hình chữ nhật \(\left(m\right)\)
Theo đề, ta có hệ pt :
\(\left\{{}\begin{matrix}y+9=x\\\left(x-3\right)\left(y+2\right)=xy+6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-x+y=-9\\xy+2x-3y-6=xy+6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-x+y=-9\\2x-3y=12\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=15 \left(tmdk\right)\\y=6\left(tmdk\right)\end{matrix}\right.\)
Vậy diện tích hình chữ nhật ban đầu là : \(15.6=90\left(m^2\right)\)
Gọi chiều dài là x ( x > 0 )
chiều rộng là x - 5
Theo bài ra ta có pt
\(\left(x+8\right)\left(x-8\right)=x\left(x-5\right)+36\Leftrightarrow x^2-64=x^2-5x+36\)
\(\Leftrightarrow5x=100\Leftrightarrow x=20\)(tm)
chiều rộng là 15 m
Diện tích khu vườn là 15 . 20 = 300 m^2
Gọi a(m) và b(m) lần lượt là chiều dài và chiều rộng ban đầu của hình chữ nhật(Điều kiện: a>0; b>0 và \(a\ge b\))
Vì chiều dài hơn chiều rộng 5m nên ta có phương trình: a-b=5(1)
Diện tích ban đầu của hình chữ nhật là:
\(ab\left(m^2\right)\)
Vì khi giảm chiều dài đi 2m và tăng chiều rộng gấp đôi thì diện tích lớn hơn diện tích ban đầu 240m2 nên ta có phương trình:
\(\left(a-2\right)\cdot2b=ab+240\)
\(\Leftrightarrow2ab-4b=ab+240\)
\(\Leftrightarrow ab-4b=240\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}a-b=5\\ab-4b=240\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=5+b\\b\left(5+b\right)-4b=240\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=5+b\\5b+b^2-4b=240\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=5+b\\b^2+b-240=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=b+5\\b^2+16b-15b-240=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+5\\b\left(b+16\right)-15\left(b+16\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=b+5\\\left(b+16\right)\left(b-15\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+5\\\left[{}\begin{matrix}b+16=0\\b-15=0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=b+5\\\left[{}\begin{matrix}b=-16\left(loại\right)\\b=15\left(nhận\right)\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=20\\b=15\end{matrix}\right.\)(thỏa ĐK)
Vậy: Chiều dài ban đầu là 20m; Chiều rộng ban đầu là 15m
Gọi chiều rộng là x
=>Chiều dài là x+60
Theo đề, ta có: (x+2)(x+55)=x(x+60)+5
=>x^2+57x+110-x^2-60x=5
=>-3x=-105
=>x=35
=>Chiều dài là 95m