c/m: a12+a22+a32+...+a20102 \(\ge\) 1/2010 với a1+a2+a3+a4+..+a2010=1
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
TH
0
QH
1
10 tháng 1 2018
\(a_1+a_2+a_3+a_4+...+a_{19}+a_{20}+a_{21}=10\)
\(\Rightarrow\left(a_1+a_2\right)+\left(a_3+a_4\right)+...+\left(a_{19}+a_{20}\right)+a_{21}=10\)
\(\Rightarrow1+1+...+1+a_{21}=10\)
\(\Rightarrow10+a_{21}=10\)
\(\Rightarrow a_{21}=0\)
Mà \(a_{20}+a_{21}=2\Leftrightarrow a_{20}=2\)
9 tháng 8 2021
Bạn tự viết ra và cân bằng phương trình nhé!
\(A:O_2\\ A_1:Fe_2O_3\\ A_2:SO_2\\ A_3:SO_3\\ A_4:H_2SO_4\\ A_5:Fe_2\left(SO_4\right)_3\\ A_6:H_2\\ A_7:Fe\\ A_8:Fe_3O_4\\ A_9:FeSO_4\)
16 tháng 2 2021
Ta có:
S=(a1+a2+a3)+(a4+a5+a6)+...+(a10+a11+a12)+a13=7
S=(-5)+(-5)+(-5)+(-5)+a13=7
S=(-20)+a13=7
=>a13=7-(-20)
=>a13=27
Ta có:
\(\left(a_n-\frac{1}{2010}\right)^2\ge0\Rightarrow a_n^2-\frac{2}{2010}a_n+\frac{1}{2010^2}\ge0\)
\(\Rightarrow a_n^2\ge\frac{2}{2010}a_n-\frac{1}{2010^2}\)
\(\Rightarrow a_1^2+a_2^2+...+a_{2010}^2\ge\frac{2}{2010}\left(a_1+a_2+...+a_{2010}\right)-2010.\frac{1}{2010^2}\)
\(=\frac{2}{2010}-\frac{1}{2010}=\frac{1}{2010}\)
Dấu "=" xảy ra khi \(a_1=a_2=...=a_n=\frac{1}{2010}\)