K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2023

Đề sai rồi bạn

6 tháng 3 2023

xét ΔABM và ΔANM, ta có : 

AB = AN (gt)

\(\widehat{MAB}=\widehat{MAN}\) (vì AM là tia phân giác của \(\widehat{A}\))

AM là cạnh chung

→ ΔABM = ΔANM (c.g.c)

a: Xét ΔABM và ΔANM co

AB=AN

góc BAM=góc NAM

AM chung

=>ΔABM=ΔANM

b: ΔABM=ΔANM

=>góc ABM=góc ANM=90 độ

=>góc NMC=90 độ-góc C=góc BAC

16 tháng 8 2019

nếu đc vẽ hộ mình hình vs 

a) Gọi chân đường trung trực của AC là D 

Xét ∆vuông ADM và ∆ vuông CDM ta có : 

AC = CD ( MD là trung trực AC )

MD chung

=> ∆ADM = ∆CDM (2 cạnh góc vuông )

=> AM = CN 

=> ∆AMC cân tại M 

=> ACM = MAC (1)

Xét ∆AMC có : 

AMC + ACM + MAC = 180° 

=> AMC = 180° - ( MAC + ACM )

=> AMC = 180° - 2ACM (2)

Xét ∆ABC có : 

BAC + ACB + ABC = 180° 

=> BAC = 180° - ( ACB + ABC )

=> BAC = 180° - 2ACB (3)

Từ (1)(2)(3) ta có : BAC = AMC 

b) Ta có : 

ABM = 180° - ABC ( kề bù )(3)

CAN = 180° - MAC ( kề bù )(4)

Mà MAC = ACB = ABC ( 5 )

Từ (3)(4)(5) ta có : ABM = CAN

Xét ∆ABM và ∆CAN ta có : 

AB = AC 

BM = AN 

ABM = CAN 

=> ∆ABM = ∆CAN (c.g.c)

=> AM = CN 

Mà AM = CM (cmt)

=> CM = CN

Trả lời:

Tam giác AIM = tam giác CIM ( ch-chg)

nên MA=MC. tam giác AMC cân tại đỉnh M. Tam giác MAC và tam giác ABC là tam giác cân lại có chung gióc C nên góc ở đỉnh của chúng bằng nhau

Vậy góc AMC = góc BAC.

Ta có : ABMˆ+ABCˆ=180ABM^+ABC^=180 và CANˆ+CAMˆ=180CAN^+CAM^=180 ( vì cùng kề bù)

do đó: góc ABM = góc CAM.

Vậy tam giác ABM= tam giác CAN (c.g.c)

=> CN=AM mà AM=CM nên suy ra CM=CN. Tam giác MCN cân tại C

Tam giác ABC cân tại A có góc BAC =45

=> ACBˆ=180−452=67o30′ACB^=180−452=67o30′

Mà ACBˆ=MACˆACB^=MAC^ nên MABˆ=67o30′

Khi đó MABˆ=MACˆ−BACˆ=67o30′−450=22o30′MAB^=MAC^−BAC^=67o30′−450=22o30′

⇒ACNˆ=22030′⇒ACN^=22o30′

MCNˆ=MCAˆ+ACMˆ=67030′+22o30′=90oMCN^=MCA^+ACM^=67o30′+22o30′=90o

\(\Rightarrow\)Tam giác CMN vuông cân ở C

                                    ~Học tốt!~

*Hình tự vẽ*

a, Vì M ϵ trung trực của AC (GT)

=> MA=MC

=> Δ MAC cân tại M

=> góc AMC = 180 2 lần góc C

Lại có Δ ABC cân tại A

=> góc BAC = 180 - 2 lần góc C

=> Góc BAC = góc AMC (= 180 - 2 lần góc C)

b, Ta có góc NAC + góc MAC = 180 (2 góc kề bù) (1)

Có: góc MBA + ABC = 180 (2 góc kề bù) (2)

mà _góc ABC = góc ACB (Δ ABC cân tại A)

_ góc ACB = góc MAC (Δ MAC cân tại M)

=> góc ABC = góc MAC (3) Từ (1) (2) (3)

=> góc NAC = góc MBA

Xét Δ MBA và Δ NAC có:

MB = NA (GT)

góc MBA = góc NAC (CMT)

BA = CA (ΔABC cân tại A)

=> ΔMBA = Δ NCA (C.G.C)

=> MA = NC (2 cạnh tương ứng)

mà MA = NC (ΔMAC cân tại M)

=> MC = NC

c) mk ko bt lm nha ~~ xl

9 tháng 7 2019

Câu hỏi của nguyen phuong mai - Toán lớp 7 - Học toán với OnlineMath'

Bạn tham khảo link trên nhé!