giúp em bài 11,12 ,13 với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 11:
b: -x^2+x-m<=0 với mọi x
Δ=1^2-4*(-1)*(-m)=1-4m
Để BPT luôn đúng thì 1-4m<=0 và -1<0
=>4m>=1
=>m>=1/4
c: mx^2+mx-1>=0
TH1: m=0
=>-1>=0(vô lý)
=>Nhận)
TH2: m<>0
Δ=m^2-4*m*(-1)=m^2+4m
Để BPT vô nghiệm thì m^2+4m<=0 và m<0
=>-4<=m<=0 và m<0
=>-4<=m<0
Bài 10:
e: \(\Leftrightarrow x\left(x+2\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Bài 12:
a: Để 12/3n-1 là số nguyên thì \(3n-1\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\right\}\)
mà n nguyên
nên \(3n-1\in\left\{-1;2;-4\right\}\)
=>\(n\in\left\{0;1;-1\right\}\)
b: Để đay là số nguyên thì 2n+3=7k
=>2n=7k-3
=>\(n=\dfrac{7k-3}{2}\left(k\in Z\right)\)
c: Để đây là số nguyên thì 2n-6+11 chia hết cho n-3
=>\(n-3\in\left\{1;-1;11;-11\right\}\)
=>\(n\in\left\{4;2;14;-8\right\}\)
Bài 13:
góc A=180-80-30=70 độ
=>góc BAD=góc CAD=70/2=35 độ
góc ADC=80+35=115 độ
góc ADB=180-115=65 độ
Bài 14:
Xét ΔABC vuông tại A
-> \(\widehat{B}\)\(+ \widehat{C}=90^o\)
Mà \(\widehat{B}=\widehat{C}\)
=> \(2\widehat{B}=90^o\)
=> \(\widehat{B}=45^o\)
14.
\(\dfrac{1-cosa}{sina}=\dfrac{sina\left(1-cosa\right)}{sin^2a}=\dfrac{sina\left(1-cosa\right)}{1-cos^2a}=\dfrac{sin\left(1-cosa\right)}{\left(1-cosa\right)\left(1+cosa\right)}=\dfrac{sina}{1+cosa}\)
Câu b đề bài sai, đẳng thức đúng phải là: \(1+tan^2a=\dfrac{1}{cos^2a}\)
\(1+tan^2a=1+\dfrac{sin^2a}{cos^2a}=\dfrac{sin^2a+cos^2a}{cos^2a}=\dfrac{1}{cos^2a}\)
\(tan^2a-sin^2a=\dfrac{sin^2a}{cos^2a}-sin^2a=\dfrac{sin^2a}{cos^2a}\left(1-cos^2a\right)=\dfrac{sin^2a}{cos^2a}.sin^2a=tan^2a.sin^2a\)
\(\dfrac{sin^4a-cos^4a}{sina+cosa}=\dfrac{\left(sin^2a+cos^2a\right)\left(sin^2a-cos^2a\right)}{sina+cosa}=\dfrac{sin^2a-cos^2a}{sina+cosa}=\dfrac{\left(sina+cosa\right)\left(sina-cosa\right)}{sina+cosa}\)
\(=sina-cosa\)
13.
b. Chia cả tử và mẫu cho sinB:
\(N=\dfrac{\dfrac{4cosB}{sinB}+\dfrac{2sinB}{sinB}}{\dfrac{cossB}{sinB}-\dfrac{3sinB}{sinB}}=\dfrac{4cotB+2}{cotB-3}=\dfrac{4.\dfrac{3}{2}+2}{\dfrac{3}{2}-3}=-\dfrac{16}{3}\)
c. Chia cả tử và mẫu cho \(cos^3B\)
\(M=\dfrac{\dfrac{sin^3B}{cos^3B}-\dfrac{cos^3B}{cos^3B}}{\dfrac{sin^3B}{cos^3B}+\dfrac{cos^3B}{cos^3B}}=\dfrac{tan^3B-1}{tan^3B+1}=\dfrac{3^3-1}{3^3+1}=\dfrac{13}{14}\)
13:
\(=\dfrac{1}{sin\left(\dfrac{pi}{33}\right)}sin\left(\dfrac{pi}{33}\right)\cdot cos\left(\dfrac{pi}{33}\right)\cdot cos\left(\dfrac{2pi}{33}\right)\cdot cos\left(\dfrac{4pi}{33}\right)\cdot cos\left(\dfrac{8pi}{33}\right)\cdot cos\left(\dfrac{16pi}{33}\right)\)
\(=\dfrac{1}{sin\left(\dfrac{pi}{33}\right)}\cdot\dfrac{1}{2}\cdot sin\dfrac{2}{33}pi\cdot cos\left(\dfrac{2}{33}pi\right)cos\left(\dfrac{4}{33}pi\right)\cdot cos\left(\dfrac{8}{33}pi\right)\cdot cos\left(\dfrac{16}{33}pi\right)\)
\(=\dfrac{1}{sin\left(\dfrac{pi}{33}\right)}\cdot\dfrac{1}{2}\cdot sin\dfrac{2}{33}pi\cdot cos\left(\dfrac{2}{33}pi\right)cos\left(\dfrac{4}{33}pi\right)\cdot cos\left(\dfrac{8}{33}pi\right)\cdot cos\left(\dfrac{16}{33}pi\right)\)\(=\dfrac{1}{sin\left(\dfrac{pi}{33}\right)}\cdot\dfrac{1}{4}\cdot sin\dfrac{4}{33}pi\cdot cos\left(\dfrac{4}{33}pi\right)\cdot cos\left(\dfrac{8}{33}pi\right)\cdot cos\left(\dfrac{16}{33}pi\right)\)
\(=\dfrac{1}{sin\left(\dfrac{pi}{33}\right)}\cdot\dfrac{1}{8}\cdot sin\dfrac{8}{33}pi\cdot cos\left(\dfrac{8}{33}pi\right)\cdot cos\left(\dfrac{16}{33}pi\right)\)
\(=\dfrac{1}{sin\left(\dfrac{pi}{33}\right)}\cdot\dfrac{1}{16}\cdot sin\dfrac{16}{33}pi\cdot cos\left(\dfrac{16}{33}pi\right)\)
\(=\dfrac{1}{sin\left(\dfrac{pi}{3}\right)}\cdot\dfrac{1}{32}\cdot sin\dfrac{32}{33}pi\)
=1/32
10:
\(=\dfrac{1}{2}\left[cos100+cos60\right]+\dfrac{1}{2}\cdot\left[cos100+cos20\right]\)
=cos100+1/2*cos20+1/4
6:
sin6*cos12*cos24*cos48
=1/cos6*cos6*sin6*cos12*cos24*cos48
=1/cos6*1/2*sin12*cos12*cos24*cos48
=1/cos6*1/4*sin24*cos24*cos48
=1/cos6*1/8*sin48*cos48
=1/cos6*1/16*sin96
=1/16
11.
\(=\frac{\sqrt{x}-3}{2-\sqrt{x}}+\frac{\sqrt{x}-2}{3+\sqrt{x}}+\frac{9-x}{(2-\sqrt{x})(\sqrt{x}+3)}\)
\(=\frac{(\sqrt{x}-3)(\sqrt{x}+3)}{(2-\sqrt{x})(\sqrt{x}+3)}+\frac{\sqrt{x}-2}{3+\sqrt{x}}+\frac{9-x}{(2-\sqrt{x})(\sqrt{x}+3)}\)
\(=\frac{x-9}{(2-\sqrt{x})(\sqrt{x}+3)}+\frac{\sqrt{x}-2}{3+\sqrt{x}}+\frac{9-x}{(2-\sqrt{x})(\sqrt{x}+3)}\)
\(=\frac{\sqrt{x}-2}{3+\sqrt{x}}\)
12.
\(=\frac{(3-\sqrt{x})(3\sqrt{x}-2)+(5\sqrt{x}+7)(3\sqrt{x}+4)}{(5\sqrt{x}+7)(3\sqrt{x}-2)}-\frac{42\sqrt{x}+34}{(5\sqrt{x}+7)(3\sqrt{x}-2)}\)
\(=\frac{12x+52\sqrt{x}+22}{(5\sqrt{x}+7)(3\sqrt{x}-2)}-\frac{42\sqrt{x}+34}{(5\sqrt{x}+7)(3\sqrt{x}-2)}\)
\(=\frac{12x+10\sqrt{x}-12}{(5\sqrt{x}+7)(3\sqrt{x}-2)}=\frac{2(3\sqrt{x}-2)(2\sqrt{x}+3)}{(5\sqrt{x}+7)(3\sqrt{x}-2)}=\frac{2(2\sqrt{x}+3)}{5\sqrt{x}+7}\)
Bài 11:
Gọi số học sinh giỏi 4 khối lần lượt là $a,b,c,d$ (em)
Theo bài ra ta có: $a+b+c-d=168$ và $\frac{a}{13}=\frac{b}{12}=\frac{c}{14}=\frac{d}{15}$
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{a}{13}=\frac{b}{12}=\frac{c}{14}=\frac{d}{15}=\frac{a+b+c-d}{13+12+14-15}=\frac{168}{24}=7$
$\Rightarrow a=13.7=91; b=12.7=84; c=14.7=98; d=15.7=105$
Bài 12:
Gọi số học sinh ba khối lần lượt là $a,b,c$ (học sinh).
Theo bài ra ta có: $\frac{a}{10}=\frac{b}{9}=\frac{c}{8}$ và $a-b=50$
Áp dụng TCDTSBN:
$\frac{a}{10}=\frac{b}{9}=\frac{c}{8}=\frac{a-b}{10-9}=\frac{50}{1}=50$
$\Rightarrow a=50.10=500; b=50.9=450; c=50.8=400$ (hs)