Cho 3 đường thẳng d1:y=4x-3,d2:y=3x-1,d3:y=x+3 chứng minh 3 đường thẳng trên đồng quy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tọa độ giao điểm của (d1) và (d2) là:
\(\left\{{}\begin{matrix}-3x=2x+5\\y=-3x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=3\end{matrix}\right.\)
Thay x=-1 vào (d3), ta được:
y=-1+4=3
Vậy: (d1), (d2) và (d3) đồng quy
\(PT\text{ hoành độ giao điểm }\left(d_1\right);\left(d_2\right)\\ 4x+4=2x+2\Leftrightarrow x=-1\Leftrightarrow y=0\Leftrightarrow A\left(-1;0\right)\\ \text{Đồng quy }\Leftrightarrow A\left(-1;0\right)\in\left(d_3\right)\Leftrightarrow-3m-5+m-1=0\Leftrightarrow-2m-6=0\Leftrightarrow m=-3\)
PT hoành độ giao điểm \(\left(d_1\right)\) và \(\left(d_2\right)\)
\(2x+1=3x-1\Leftrightarrow x=2\Leftrightarrow y=5\Leftrightarrow A\left(2;5\right)\)
Thay \(x=2;y=5\) vào \(\left(d_3\right)\Leftrightarrow2+3=5\) (đúng)
Do đó \(A\left(2;5\right)\in\left(d_3\right)\)
Vậy \(\left(d_1\right);\left(d_2\right);\left(d_3\right)\) đồng quy tại \(A\left(2;5\right)\)
\(\left\{{}\begin{matrix}2x+1=3x-1\\y=2x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=5\end{matrix}\right.\)
Thay x=2 và y=5 vào y=x+3, ta được:
2+3=5(đúng)
Xét phương trình hoành độ giao điểm của (d1) và (d2)
\(2x+1=3x+4\) \(\Leftrightarrow x=-3\), thay vào (d1) ta được \(y=-5\)
\(\Rightarrow\) (d1) cắt (d2) tại \(\left(-3;-5\right)\)
Thay \(x=-3\) và \(y=-5\) vào (d3) ta thấy \(-3-2=y=-5\)
\(\Rightarrow\) 3 đường thẳng luôn đồng quy tại điểm \(\left(-3;-5\right)\)
có y=ax+b(d)
thì d sẽ cắt oy tại b
d1,d2,d3 đều cắt oy tại tung độ 2
mình làm ngắn gọn tạo hướng lm còn bạn bổ sung lời giải nha
Giao điểm A(x; y) của hai đường thẳng d 2 và d 3 là nghiệm hệ phương trình: y = - x + 3 y = - 2 x + 1 ⇔ x = - 2 y = 5 ⇒ A ( - 2 ; 5 )
Do đường thẳng d 4 // d 1 nên d 4 có dạng: y = 2x + b
Ba đường thẳng d 2 ; d 3 ; d 4 đồng quy nên điểm A(-2; 5) thuộc đường thẳng d 4 .
Suy ra: 5 = 2.(-2) + b ⇔ b = 9
Vậy phương trình đường thẳng ( d 4 ) là y = 2x + 9.
Tọa độ giao điểm của (d1) và (d2) là:
\(\left\{{}\begin{matrix}2x+3=x-4\\y=x-4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x-x=-4-3=-7\\y=x-4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-7\\y=-7-4=-11\end{matrix}\right.\)
Thay x=-7 và y=-11 vào (d3), ta được:
-7m+m+1=-11
=>-6m=-11-1=-12
=>m=12/6=2
Tọa độ giao điểm của (d1) và (d2) là:
\(\left\{{}\begin{matrix}4x-3=3x-1\\y=4x-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4x-3x=-1+3\\y=4x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\cdot2-3=5\end{matrix}\right.\)
Thay x=2 và y=5 vào y=x+3, ta được:
2+3=5
=>5=5(đúng)
=>(d1),(d2),(d3) đồng quy