Cần lấy tổng của bao nhiêu số hạng đầu của cấp số cộng 2,5,8,... để được kết quả bằng 345?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \({S_n} = \frac{n}{2}\left[ {2 \times 5 + \left( {n - 1} \right) \times 2} \right] = 2700\;\)
\( \Leftrightarrow \frac{n}{2}\left( {8 + 2n} \right) = 2700\;\)
\( \Leftrightarrow {n^2} + 4n - 2700 = 0\;\)
\( \Leftrightarrow \left[ \begin{array}{l}n = - 54(L)\\n = 50(TM)\end{array} \right.\)
Vậy phải lấy tổng 50 số hạng đầu
Ta có: \({S_n} = \frac{{5\left( {1 - {2^n}} \right)}}{{1 - 2}} = - 5 + 5 \times {2^n}\;\)
\(\begin{array}{l}5115 = - 5 + {5.2^n}\\ \Leftrightarrow {2^n} = 1024 = 2.\\ \Rightarrow n = 10.\end{array}\)
Vậy phải lấy tổng 10 số hạng đầu.
Gọi ba số đó là \(x,y,z\). Do ba số là các số hạng thứ hai, thứ 9 và thứ 44 của một cấp số cộng nên:
\(x;y=x+7d;z=x+42d\). (Với d là công sai của cấp số cộng).
Ta có: \(x+y+z=x+x+7d+x+42d=3x+49d=217\).
Mặt khác x, y, z là các số hạng liên tiếp của một cấp số nhân nên:
\(y^2=xz\)\(\Leftrightarrow\left(x+7d\right)^2=x\left(x+42d\right)\)\(\Leftrightarrow-28xd+49d^2=0\)\(\Leftrightarrow7d\left(-4x+7d\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}d=0\\-4x+7d=0\end{matrix}\right.\).
Với \(d=0\) suy ra \(x=y=z=\dfrac{217}{3}\).
Suy ra: \(n=820:\dfrac{217}{3}=\dfrac{2460}{217}\notin N\).
Với \(4+7d=0\). Ta có hệ:
\(\left\{{}\begin{matrix}4x+7d=0\\3x+49d=217\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=7\\d=4\end{matrix}\right.\).
Vậy \(u_1=7-4=3\).
Có \(S_n=\dfrac{\left[2u_1+\left(n-1\right)d\right]n}{2}=\dfrac{\left[2.3+\left(n-1\right)4\right]n}{2}=820\)
\(\Rightarrow n=20\left(tm\right)\).
u 12 = 23 S 12 = 144 ⇒ u 1 + 11 d = 23 12 2 u 1 + u 12 = 144 ⇔ u 1 + 11 d = 23 u 1 + 23 = 24 ⇔ u 1 = 1 d = 23 − u 1 11 = 2
Chọn đáp án A
Gọi số số hạng cần lấy là n
Theo đề, ta có: \(u_1=2;d=3\)
Để được kết quả là 345 thì \(\dfrac{n\cdot\left[2\cdot u_1+\left(n-1\right)\cdot d\right]}{2}=345\)
=>\(\dfrac{n\left[2\cdot2+\left(n-1\right)\cdot3\right]}{2}=345\)
=>\(n\left(4+3n-3\right)=690\)
=>\(3n^2+n-690=0\)
=>\(3n^2-45n+46n-690=0\)
=>\(3n\left(n-15\right)+46\left(n-15\right)=0\)
=>\(\left(n-15\right)\left(3n+46\right)=0\)
=>\(\left[{}\begin{matrix}n=15\left(nhận\right)\\n=-\dfrac{46}{3}\left(loại\right)\end{matrix}\right.\)
Vậy: Cần lấy tổng của 15 số hạng đầu