tìm GTNN cûa 2016+|x-3|+|y-5|
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì | x -3 | > hoặc = 0
Suy ra : |x-3|+50 >hoặc =50
Vì A nhỏ nhất suy ra | x-3 | +50 =50
Suy ra x-3 =0
Suy ra x=3
Vậy GTNN của A = 50 khi x=3
Ta có: A=\(3.\left(x+2\right)^2+\left(1-y\right)^2+2016\)
Vì \(3.\left(x+2\right)^2\ge0;\left(1-y\right)^2\ge0\)
\(\Leftrightarrow A\ge2016\)
Dấu "=" xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}x+2=0\\1-y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=1\end{matrix}\right.\)
Vậy MinA=2016 khi và chỉ khi x=-2;y=1
A = |x| + 2017
\(\left|x\right|\ge0\forall x\)
\(\Rightarrow\left|x\right|+2017\ge2017\forall x\)
Đẳng thức xảy ra \(\Leftrightarrow\left|x\right|=0\Leftrightarrow x=0\)
Vậy GTNN của A = 2017 \(\Leftrightarrow x=0\)
B = |5 - y| + 2016
\(\left|5-y\right|\ge0\forall y\)
\(\Rightarrow\left|5-y\right|+2016\ge2016\forall y\)
Đẳng thức xảy ra \(\Leftrightarrow\left|5-y\right|=0\Leftrightarrow5-y=0\Leftrightarrow y=5\)
Vậy GTNN của B = 2016 \(\Leftrightarrow y=5\)
Ta có : \(\frac{3n^3+10n^2-5}{3n+1}=n^2+3n-\frac{6}{3n+1}\)
Để \(3n^3+10n^2-5⋮3n+1\) \(\Leftrightarrow6⋮3n+1\)
\(\Rightarrow3n+1\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
\(\Rightarrow3n=\left\{-7;-4;-3;-2;0;1;2;5\right\}\)
\(\Rightarrow n=\left\{-\frac{7}{3};-\frac{4}{3};-1;-\frac{2}{3};0;\frac{1}{3};\frac{2}{3};\frac{5}{3}\right\}\)
Mà n là số nguyên nên \(n=\left\{-1;0\right\}\)
Áp dụng BĐT giá trị tuyệt đối: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
Ta có:\(M=\left(\left|-x+1\right|+\left|x-3\right|\right)+\left|x-2\right|\ge\left|-x+1+x-3\right|+\left|x-2\right|=2+\left|x-2\right|\ge2\) với mọi x
Do đó MMin=2
\(M=2\Leftrightarrow\int^{\left(-x+1\right).\left(x-3\right)\ge0}_{x=2}\Leftrightarrow\int^{1\le x\le3}_{x=2}\Leftrightarrow x=2\)
Vậy MMin=2 tại x=2
a)
Ta có : \(A=\left|x-2\right|+\left|x-5\right|=\left|x-2\right|+\left|5-x\right|\ge\left|x-2+5-x\right|=3\)
\(\Rightarrow A\ge3\)
Dấu " = " xảy ra khi \(\begin{cases}x-2\ge0\\5-x\ge0\end{cases}\)\(\Leftrightarrow2\le x\le5\)
Vậy MINA=3 khi \(2\le x\le5\)
b)
Ta có :
\(\begin{cases}\left|x-1\right|+\left|x-2016\right|\ge\left|x-1+2016-x\right|=2015\\\left|x-2\right|+\left|x-2015\right|\ge\left|x-2+2015-x\right|=2013\\...\\\left|x-1008\right|+\left|x-1009\right|\ge\left|x-1008+1009-x\right|=1\end{cases}\)
\(\Rightarrow B\ge1+3+....+2015\)=1016064
Dấu " = " xảy ra khi \(\begin{cases}\begin{cases}x-1\ge0\\2016-x\ge0\end{cases}\\....\\\begin{cases}x-1008\ge0\\1009-x\ge0\end{cases}\end{cases}\)\(\Rightarrow1008\le x\le1009\)
Vậy ...........
A = |x - 2| + |x - 5|
A = |x - 2| + |5 - x|
Áp dụng bđt \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\) \(\forall x;y\)ta có:
\(A=\left|x-2\right|+\left|5-x\right|\ge\left(x-2\right)+\left(5-x\right)=3\)
Dấu "=" xảy ra khi \(\begin{cases}x-2\ge0\\x-5\le0\end{cases}\)\(\Rightarrow\begin{cases}x\ge2\\x\le5\end{cases}\)\(\Rightarrow2\le x\le5\)
Vậy GTNN của A là 3 khi \(2\le x\le5\)
B = |x - 1| + |x - 2| + |x - 3| + ... + |x - 2016|
B = |x - 1| + |x - 2| + ... + |x - 1008| + |x - 1009| + |x - 1010| + ... + |x - 2016|
B = |x - 1| + |x - 2| + ... + |x - 1008| + |1009 - x| + |1010 - x| + ... + |2016 - x|
Áp dụng bđt \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)\(\forall x;y\) ta có:
\(B=\left|x-1\right|+\left|x-2\right|+...+\left|x-1008\right|+\left|1009-x\right|+\left|1010-x\right|+...+\left|2016-x\right|\)
\(\ge\left(x-1\right)+\left(x-2\right)+...+\left(x-1008\right)+\left(1009-x\right)+\left(1010-x\right)+...+\left(2016-x\right)\)
\(B\ge1008^2=1016064\)
Dấu "=" xảy ra khi \(\begin{cases}x-1\ge0\\1009-x\le0\end{cases}\)\(\Rightarrow\begin{cases}x\ge1\\x\le1009\end{cases}\)\(\Rightarrow1\le x\le1009\)
Vây GTNN của B là 1016064 khi \(1\le x\le1009\)
|x-3|;|x+7| > 0
=>F > -111+0=-111
=>Fmin=-111
dấu "=" xảy ra<=>x=3;x=-7
Ta có |x- 3|>= 0 với mọi x
|y- 5|>=0 với mọi y
=> |x- 3| + |y- 5| với mọi x,y
=> 2016+ |x- 3|+ |y- 5| >= 2016 với mọi x,y
Dấu = xảy ra <=> x- 3= 0 <=> x= 3
y- 5= 0 y= 5
Vậy GTNN của 2016+ |x- 3|+ |y- 5| là 2016 tại x= 3 và y= 5
Đáp án :2016