K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2017

1/ Chứng minh nó chia hết cho 3:

Nếu cả x,y đều không chia hết cho 3 thì x2, y2 chia cho 3 dư 1.

\(\Rightarrow z^2=x^2+y^2\) chia cho 3 dư 2. Mà không có số chính phương chia 3 dư 2 nên ít nhất x, y chia hết cho 3.

\(\Rightarrow xy⋮3\)

Chứng minh chia hết cho 4.

Nếu cả x, y đều chẵn thì \(xy⋮4\)

Nếu trong x, y có 1 số lẻ (giả sử là x) thì z là số lẻ

\(\Rightarrow x=2k+1;y=2m;z=2n+1\)

\(\Rightarrow4m^2=4n^2+4n+1-4k^2-4k-1=4\left(n^2+n-k^2-k\right)\)

\(\Rightarrow m^2=\left(n^2+n-k^2-k\right)\)

\(\Rightarrow m⋮2\)

\(\Rightarrow y⋮4\)

\(\Rightarrow xy⋮4\)

Với x, y đều lẻ nên z chẵn

\(\Rightarrow x^2=4m+1;y^2=4n+1;z^2=4p\)

\(\Rightarrow\)Không tồn tại x, y, z nguyên thỏa cái này

Vậy \(xy⋮4\)

Từ chứng minh trên 

\(\Rightarrow xy⋮12\)

4 tháng 8 2017

2/ \(a+b=c+d\)

\(\Leftrightarrow\left(a+b\right)^2=\left(c+d\right)^2\)

\(\Leftrightarrow2ab=2cd\)

\(\Leftrightarrow-2ab=-2cd\)

\(\Leftrightarrow\left(a-b\right)^2=\left(c-d\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}a-b=c-d\\a-b=d-c\end{cases}}\)

Kết hợp với \(a+b=c+d\)

\(\Leftrightarrow\orbr{\begin{cases}a=c\\a=d\end{cases}}\)

\(\RightarrowĐPCM\)

13 tháng 5 2022

giả sử : \(x+y+xy=-1\) \(\Rightarrow x+y+xy+1=0\)

\(\Rightarrow\left(x+1\right)\left(y+1\right)=0\rightarrow x+1=0\) hoặc \(y+1=0\)

\(\Rightarrow x=-1\) hoặc \(y=-1\) ( trái giả thiết )

vậy nếu \(x\ne-1\) và \(y\ne-1\) thì \(x+y+xy\ne-1\)

19 tháng 4 2022

Vì (x-y)\(^2\)≥0 ∀x,y 

<=> x\(^2\)-2xy+y\(^2\)≥0

<=> x\(^2\)+y\(^2\)≥2xy

<=>2(x\(^2\)+y\(^2\))≥(x+y)\(^2\) = 1 (đpcm)

18 tháng 12 2017

Ta có : x + y = -1
=> ( x + y )2 = 1
=> - ( x + y )2 = -1
=> - ( x2 + 2xy + y2 ) = -1
=> -x2 - 2xy - y2 = -1
=> - x2 + xy - y2 - 3xy = -1
=> -( x2 - xy + y2 ) - 3xy = -1
=> -1 . ( x2 - xy + y2 ) - 3xy = -1
Thay -1 = x + y vào biểu thức ta có :

( x + y ) . ( x2 - xy + y2 ) - 3xy = -1
=> x3 + y3 - 3xy = -1 ( ĐPCM )

20 tháng 12 2019

Ta có:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}=0\)

\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right)=0\)

\(\Leftrightarrow\left(x+y\right)\cdot\frac{xy+z\left(x+y+z\right)}{xyz\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

\(\Leftrightarrow x=-y\left(h\right)y=-z\left(h\right)z=-x\)

Xét \(x=-y\)

Ta có:

\(\frac{1}{x^{2017}}+\frac{1}{y^{2017}}+\frac{1}{z^{2017}}=\frac{1}{x^{2017}}+\frac{1}{-y^{2017}}+\frac{1}{y^{2017}}=\frac{1}{z^{2017}}\)

\(\frac{1}{x^{2017}+y^{2017}+z^{2017}}=\frac{1}{-x^{2017}+y^{2017}+z^{2017}}=\frac{1}{z^{2017}}\)

\(\Rightarrow\frac{1}{x^{2017}}+\frac{1}{y^{2017}}+\frac{1}{z^{2017}}=\frac{1}{x^{2017}+y^{2017}+z^{2017}}\left(dpcm\right)\)

Một cái chặt hơn nè:))

CMR nếu \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\) thì \(\frac{1}{x^n}+\frac{1}{y^n}+\frac{1}{z^n}=\frac{1}{x^n+y^n+z^n}\) với n lẻ.

9 tháng 12 2018

ddeeelll cần làm

3 tháng 9 2015

Từ x + y + z = a và 1/x + 1/y + 1/z = 1/a

=> 1/x + 1/y + 1/z = 1/ ( x + y + z )

<=>( xy + yz + xz )/xyz = 1/ x + y + z

<=>( xy + yz + xz ) ( x + y + z ) = xyz

Rồi dựa vào đó bạn nhân phá ngoặc và biến phương trình trên về dạng :

( x + y ) ( y + z ) ( z + x ) = 0

=> x = -y => x = a

hoặc y = -z =>x = a

hoặc z = -x => y = a

Nhớ Li - ke nhé !!!

Chúc học tốt !!!