K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 4 2019

Bài 1:

a/ \(P\left(x\right)=\frac{1}{2}\left(4x^2+4x+1\right)+\frac{3}{4}=\frac{1}{2}\left(2x+1\right)^2+\frac{3}{4}\)

Do \(\frac{1}{2}\left(2x+1\right)^2\ge0\) \(\forall x\Rightarrow P\left(x\right)=\frac{1}{2}\left(2x+1\right)^2+\frac{3}{4}>0\) \(\forall x\)

\(\Rightarrow\) Đa thức ko có nghiệm

b/ \(72^{63}=\left(8.9\right)^{63}=\left(2^3.3^2\right)^{63}=2^{189}.3^{126}\)

\(A=24^{54}.54^{24}.2^{10}=\left(8.3\right)^{54}.\left(27.2\right)^{24}.2^{10}=\left(2^3.3\right)^{54}.\left(3^3.2\right)^{24}.2^{10}=2^{196}.3^{126}\)

\(\Rightarrow A=2^7.2^{189}.3^{126}=2^7.72^{63}⋮72^{63}\)

Bài 2:

\(5x^2+10x=0\Leftrightarrow5x\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}5x=0\\x+2=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

\(5^{\left(x-2\right)\left(x+3\right)}=1\Leftrightarrow5^{\left(x-2\right)\left(x+3\right)}=5^0\)

\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

c: \(P\left(-1\right)=-3-5-4+2+6+4=0\)

Vậy: x=-1 là nghiệm của P(x)

\(Q\left(-1\right)=4+1+3+2-7+1=4< >0\)

=>x=-1 không là nghiệm của Q(x)

26 tháng 3 2018

Áp dụng hằng đẳng thức đáng nhớ ta có :

x4+2x2+1=(x2+1)2

Ta có : (x2+1)2 luôn luôn lớn hơn hoặc bằng 0

=>PT trên vô nghiệm

26 tháng 3 2018

Theo hằng đẳng thức đáng nhớ , ta có :

\(x^4+2x^2+1=\left(x^2+1\right)^2\)

Vì \(x^2\ge0\).Nên \(x^2+1\ge1;\Rightarrow x^2+1>0\)

\(\Rightarrow\left(x^2+1\right)^2>0\)

Vậy phương trình vô nghiệm.

30 tháng 6 2021

\(a.\)

\(f\left(x\right)=0\)

\(\Leftrightarrow2x-4=0\)

\(\Leftrightarrow x=2\)

\(b.\)

\(g\left(x\right)=2x-4+x^2-x+6\)

\(g\left(x\right)=x^2+x+2=\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)

PTVN 

3 tháng 8 2016

\(\left(x-4\right)^2+\left(x+5\right)^2\)

Nếu đa thức trên có nghiệm là n

\(\Leftrightarrow\left(n-4\right)^2+\left(n+5\right)^2=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}\left(n-4\right)^2=0\\\left(n+5\right)^2=0\end{array}\right.\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}n-4=0\\n+5=0\end{array}\right.\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}n=4\\n=-5\end{array}\right.\) vô lí 

Vậy đa thức trên không có nghiệm

3 tháng 8 2016

bạn ở dưới phải ghi ngoặc nhọn chứ

7 tháng 5 2022

\(P\left(0\right)=3.0^4+0^3-0^2+\dfrac{1}{4}.0=0+0-0+0=0\)

\(Q\left(0\right)=0^4-4.0^3+0^2-4=0-0+0-4=-4\)

vậy Chứng tỏ x=0 là nghiệm của đa thức P(x), nhưng không phải là nghiệm của đa thức Q(x)

7 tháng 5 2022

thu gọn

\(P\left(x\right)=3x^4+x^3\left(-2x^2+x^2\right)+\dfrac{1}{4}x=3x^4+x^3-x^2+\dfrac{1}{4}x\)

\(Q\left(x\right)=x^4-4x^3+\left(3x^2-2x^2\right)-4=x^4-4x^3+x^2-4\)

8 tháng 8 2021

Ta có: 

x^4+2x^3+2x^2+1

=x^2(x^2+2x+2)+1

Ta thấy x^2(x^2+2x+2)> hoặc =0 nên 

x^2(x^2+2x+2)+1>0 nên ko có nghiệm

Chúc học tốt

\(x^2+2x+3=0\)

\(=>\hept{\begin{cases}x^2=0\\2x=0\\3=0\end{cases}}\)

\(=>\hept{\begin{cases}x=0\\x=0\\3\end{cases}=>0+0+3\ne0}\)

=> \(x^2+2x+3\)vô nghiệm

21 tháng 6 2016

\(f\left(x\right)=x^2+2x+3=x^2+2x+1+2=\left(x+1\right)^2+2\)

Ta có: \(\left(x+1\right)^2\ge0\) với mọi \(x\in R\)

\(\Rightarrow\left(x+1\right)^2+2\ge2>0\)với mọi \(x\in R\)

\(\Rightarrow x^2+2x+3>0\) với mọi \(x\in R\)

Vậy đa thức \(f\left(x\right)=x^2+2x+3\) vô nghiệm