Cho hcn abcd. Kẻ ah vuông góc bd(h thuộc bd). Tia phân giác của góc adb cất ah và ab lần lượt tại m và k. Chưng minh ak^2=bk.hm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi N, G lần lượt là giao điểm của AH, AK với BC.
Xét ∆ABN có BH là đường cao cũng là phân giác nên là tam giác cân do đó BH cũng là trung tuyến
=> HN = HA
Tương tự: AK = KG
∆ANG có HN = HA và AK = KG nên HK là đường trung bình của tam giác
=> HK // HG hay HK // BC (đpcm)
a) Xét ΔBHA vuông tại H và ΔBHE vuông tại H có
BH chung
\(\widehat{ABH}=\widehat{EBH}\)(BH là tia phân giác của \(\widehat{ABE}\))
Do đó: ΔBHA=ΔBHE(cạnh góc vuông-góc nhọn kề)
b) Ta có: ΔBHA=ΔBHE(cmt)
nên BA=BE(hai cạnh tương ứng)
Xét ΔBAD và ΔBED có
BA=BE(cmt)
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
BD chung
Do đó: ΔBAD=ΔBED(c-g-c)
Suy ra: \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)
mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)
nên \(\widehat{BED}=90^0\)
hay DE\(\perp\)BC(đpcm)
a) Vì AH \(\perp\) BD (gt), ABCD là hình chữ nhật (gt)
=> \(\widehat{AHD}=\widehat{DAB}\) = 90o (ĐN 2 đt \(\perp\) và ĐN HCN)
Xét \(\Delta\)HAD và \(\Delta\)ABD có:
\(\widehat{AHD}=\widehat{DAB}\) (cmt)
\(\widehat{D}\): chung
=> \(\Delta\)HAD ~ \(\Delta\)ABD (g.g)
=> \(\dfrac{AD}{BD}=\dfrac{HD}{AD}\) (ĐN 2 \(\Delta\) ~)
Ta có: DK là tia phân giác của 2 \(\Delta\)ADB và \(\Delta\)ADH
=> \(\dfrac{AK}{KB}=\dfrac{AD}{DB};\dfrac{HM}{AM}=\dfrac{DH}{AD}\) (t/c đường p/g \(\Delta\))
mà \(\dfrac{AD}{BD}=\dfrac{HD}{AD}\) (cmt)
=> \(\dfrac{AK}{KB}=\dfrac{HM}{AM}\)
=> AK . AM = HM . BK (t/c TLT)
b) Xét \(\Delta\)ABC có: EP // BC (EP // AF, BC // AD)
=> \(\dfrac{AE}{EB}=\dfrac{EP}{BC}=\dfrac{AD}{AC}\) (hệ quả ĐL Ta-lét) (1)
Xét \(\Delta\)ADC có: FP // DC (AE // FP, AB // CD)
=> \(\dfrac{AF}{FP}=\dfrac{AD}{DC}\) (hệ quả ĐL Ta-lét) (2)
Từ (1) và (2) => \(\dfrac{AE}{AB}=\dfrac{AF}{AD}\)
=> EF // BD (ĐL Ta-lét đảo)
=> \(\widehat{FMQ}=\widehat{QDB}\) (2 góc so le trong)
Gọi giao điểm của AO và EF là I
mà AEPF là hình chữ nhật (gt)
=> I là trung điểm AP, EF (t/c HCN)
Xét \(\Delta\)EFQ có: EF // BD (cmt)
=> \(\dfrac{EF}{BD}=\dfrac{EQ}{DQ}\) (hệ quả ĐL Ta-lét)
mà \(\dfrac{EF}{BD}=\dfrac{EI}{DQ}\) (EF = 2EI, BD = 2DO)
=> \(\dfrac{EQ}{DQ}=\dfrac{EI}{DO}\)
Xét \(\Delta\)IQE và \(\Delta\)OQD có:
\(\widehat{FMQ}=\widehat{QDB}\) (cmt)
\(\dfrac{EQ}{DQ}=\dfrac{EI}{DO}\) (cmt)
=> \(\Delta\)IQE ~ \(\Delta\)OQD (c.g.c)
=> \(\widehat{IQE}=\widehat{OQD}\) (ĐN 2 \(\Delta\) ~)
mà \(\widehat{DQO}+\widehat{OQE}=180^o\) (2 góc kề bù)
do đó \(\widehat{IQE}+\widehat{OQE}=180^o\)
=> I, O, Q thẳng hàng
hay A, O, Q thẳng hàng
*hình mình thiếu điểm O, bạn tự thêm vào nhé*
a: Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
Suy ra:AN//CM
a, Xét tam giác BAD và tam giác BKD có :
BD : cạnh chung
BA = BK
Góc ABD = Góc DBK
==> Tam giác ABD = Tam giác KBD ( C - G - C )
==> AD = DK ( đpcm )
b, Xét tam giác ADE và tam giác KDC có :
AD = DK
Góc ADE = Góc KDC
Góc DAE = Góc DKC
==> Tam giác ADE = Tam giác KDC ( G - C - G )
c, Xét tam giác BAM và tam giác BKM có :
BM : cạnh chung
BA = BK
Góc ABM = Góc MBK
==> Tam giác ABM = Tam giác KBM ( C - G - C )
==> Góc BMA = Góc BMK Mà Góc AMK = 180 độ
==> Góc BMA = Góc BMK = 90 độ
==> AK vuông góc với BD
Ta có hình vẽ
Tớ chỉ vẽ hình thôi còn bài tự làm nhé! g
Gợi ý:
a) trước tiên ta xét Tam giác chứa cạnh AD và DK
Còn Muốn CM EK vuông góc vói BC thì CM nó tạo thành một góc 90 độ
b) chúng minh theo các trường hợp (c.g.c) (g.c.g) (c.c.c)
giúp mih đi mih đang làm bài kt