K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2021

giúp mih đi mih đang làm bài kt

 

1 tháng 9 2021

Gọi N, G lần lượt là giao điểm của AH, AK với BC.
Xét ∆ABN có BH là đường cao cũng là phân giác nên là tam giác cân do đó BH cũng là trung tuyến

=> HN = HA


Tương tự: AK = KG
∆ANG có HN = HA và AK = KG nên HK là đường trung bình của tam giác

=> HK // HG hay HK // BC (đpcm)

a) Xét ΔBHA vuông tại H và ΔBHE vuông tại H có 

BH chung

\(\widehat{ABH}=\widehat{EBH}\)(BH là tia phân giác của \(\widehat{ABE}\))

Do đó: ΔBHA=ΔBHE(cạnh góc vuông-góc nhọn kề)

b) Ta có: ΔBHA=ΔBHE(cmt)

nên BA=BE(hai cạnh tương ứng)

Xét ΔBAD và ΔBED có 

BA=BE(cmt)

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

BD chung

Do đó: ΔBAD=ΔBED(c-g-c)

Suy ra: \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)

mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)

nên \(\widehat{BED}=90^0\)

hay DE\(\perp\)BC(đpcm)

A B C D H E F P M K Q I

a) Vì AH \(\perp\) BD (gt), ABCD là hình chữ nhật (gt)

=> \(\widehat{AHD}=\widehat{DAB}\) = 90o (ĐN 2 đt \(\perp\) và ĐN HCN)

Xét \(\Delta\)HAD và \(\Delta\)ABD có:

\(\widehat{AHD}=\widehat{DAB}\) (cmt)

\(\widehat{D}\): chung

=> \(\Delta\)HAD ~ \(\Delta\)ABD (g.g)

=> \(\dfrac{AD}{BD}=\dfrac{HD}{AD}\) (ĐN 2 \(\Delta\) ~)

Ta có: DK là tia phân giác của 2 \(\Delta\)ADB và \(\Delta\)ADH

=> \(\dfrac{AK}{KB}=\dfrac{AD}{DB};\dfrac{HM}{AM}=\dfrac{DH}{AD}\) (t/c đường p/g \(\Delta\))

\(\dfrac{AD}{BD}=\dfrac{HD}{AD}\) (cmt)

=> \(\dfrac{AK}{KB}=\dfrac{HM}{AM}\)

=> AK . AM = HM . BK (t/c TLT)

b) Xét \(\Delta\)ABC có: EP // BC (EP // AF, BC // AD)

=> \(\dfrac{AE}{EB}=\dfrac{EP}{BC}=\dfrac{AD}{AC}\) (hệ quả ĐL Ta-lét) (1)

Xét \(\Delta\)ADC có: FP // DC (AE // FP, AB // CD)

=> \(\dfrac{AF}{FP}=\dfrac{AD}{DC}\) (hệ quả ĐL Ta-lét) (2)

Từ (1) và (2) => \(\dfrac{AE}{AB}=\dfrac{AF}{AD}\)

=> EF // BD (ĐL Ta-lét đảo)

=> \(\widehat{FMQ}=\widehat{QDB}\) (2 góc so le trong)

Gọi giao điểm của AO và EF là I

mà AEPF là hình chữ nhật (gt)

=> I là trung điểm AP, EF (t/c HCN)

Xét \(\Delta\)EFQ có: EF // BD (cmt)

=> \(\dfrac{EF}{BD}=\dfrac{EQ}{DQ}\) (hệ quả ĐL Ta-lét)

\(\dfrac{EF}{BD}=\dfrac{EI}{DQ}\) (EF = 2EI, BD = 2DO)

=> \(\dfrac{EQ}{DQ}=\dfrac{EI}{DO}\)

Xét \(\Delta\)IQE và \(\Delta\)OQD có:

\(\widehat{FMQ}=\widehat{QDB}\) (cmt)

\(\dfrac{EQ}{DQ}=\dfrac{EI}{DO}\) (cmt)

=> \(\Delta\)IQE ~ \(\Delta\)OQD (c.g.c)

=> \(\widehat{IQE}=\widehat{OQD}\) (ĐN 2 \(\Delta\) ~)

\(\widehat{DQO}+\widehat{OQE}=180^o\) (2 góc kề bù)

do đó \(\widehat{IQE}+\widehat{OQE}=180^o\)

=> I, O, Q thẳng hàng

hay A, O, Q thẳng hàng

*hình mình thiếu điểm O, bạn tự thêm vào nhé*

11 tháng 5 2018

nhìn hình rối quá t laonj nhịp @@

12 tháng 10 2021

a: Xét tứ giác AMCN có 

AM//CN

AM=CN

Do đó: AMCN là hình bình hành

Suy ra:AN//CM

2 tháng 12 2018

a, Xét tam giác BAD và tam giác BKD có :

                                                     BD : cạnh chung 

                                                     BA = BK

                                                     Góc ABD = Góc DBK

==> Tam giác ABD = Tam giác KBD ( C - G - C )

==> AD = DK ( đpcm )

b, Xét tam giác ADE và tam giác KDC có :

                                                     AD = DK

                                                     Góc ADE = Góc KDC

                                                     Góc DAE = Góc DKC

==> Tam giác ADE = Tam giác KDC ( G - C - G )

c, Xét tam giác BAM và tam giác BKM có :

                                                     BM : cạnh chung 

                                                     BA = BK

                                                     Góc ABM = Góc MBK

==> Tam giác ABM = Tam giác KBM ( C - G - C )

==> Góc BMA = Góc BMK Mà Góc AMK = 180 độ

==> Góc BMA = Góc BMK = 90 độ

==> AK vuông góc với BD

Ta có hình vẽ

Tớ chỉ vẽ hình thôi còn bài tự làm nhé! g

Gợi ý:

a)    trước tiên ta xét Tam giác chứa cạnh AD và DK

Còn Muốn CM EK vuông góc vói BC thì CM nó tạo thành một góc 90 độ

b) chúng minh theo các trường hợp (c.g.c) (g.c.g) (c.c.c)