K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔABC vuông tại A nội tiếp (O)

=>O là trung điểm của BC

ΔBAC vuông tại A

=>\(BC^2=AB^2+AC^2\)

=>\(BC^2=9^2+12^2=225\)

=>BC=15(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2\)

=>\(BH\cdot15=9^2=81\)

=>BH=5,4(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot15=9\cdot12=108\)

=>AH=7,2(cm)

ΔOAD cân tại O

mà OH là đường cao

nên H là trung điểm của AD

=>AD=2*HA=14,4(cm)

b: Xét ΔBAH vuông tại H có \(sinBAH=\dfrac{BH}{AB}=\dfrac{5.4}{9}=\dfrac{3}{5}\)

=>\(\widehat{BAH}\simeq37^0\)

NV
21 tháng 4 2023

a.

Xét hai tam giác HBA và ABC có:

\(\left\{{}\begin{matrix}\widehat{B}\text{ chung}\\\widehat{BHA}=\widehat{BAC}=90^0\end{matrix}\right.\) \(\Rightarrow\Delta HBA\sim\Delta ABC\left(g.g\right)\)

b.

Áp dụng định lý Pitago cho tam giác vuông ABC:

\(BC=\sqrt{AB^2+AC^2}=25\left(cm\right)\)

Từ câu a ta có: \(\dfrac{HA}{AC}=\dfrac{BA}{BC}\Rightarrow HA=\dfrac{AB.AC}{BC}=12\left(cm\right)\)

c.

Áp dụng định lý Pitago cho tam giác vuông HBA:

\(BH=\sqrt{AB^2-HA^2}=9\left(cm\right)\)

Do AD là phân giác, áp dụng định lý phân giác:

\(\dfrac{BD}{AB}=\dfrac{DH}{AH}\Rightarrow\dfrac{BD}{AB}=\dfrac{BH-BD}{AH}\)

\(\Rightarrow12BD=15\left(9-BD\right)\Rightarrow BD=5\left(cm\right)\)

\(\Rightarrow DH=BH-BD=4\left(cm\right)\)

NV
21 tháng 4 2023

loading...

loading...  loading...  

20 tháng 10 2023

1: ΔABC vuông tại A 

nên ΔABC nội tiếp đường tròn đường kính BC

=>O là trung điểm của BC

ΔOAD cân tại O

mà OI là đường cao

nên I là trung điểm của AD

Xét ΔABC vuông tại A có AI là đường cao

nên \(IA^2=IB\cdot IC\)

=>\(IA\cdot ID=IB\cdot IC\)

2:

a: AB=AC

OB=OC

Do đó: AO là đường trung trực của BC

=>AO vuông góc BC tại trung điểm của BC

=>AO vuông góc BC tại H và H là trung điểm của BC

b: Xét (O) có

\(\widehat{BAC}\) là góc nội tiếp chắn cung BC

Do đó: \(\widehat{BOC}=2\cdot\widehat{BAC}=120^0\)

ΔOBC cân tại O

mà OH là đường cao

nên OH là phân giác của góc BOC

=>\(\widehat{BOH}=\dfrac{120^0}{2}=60^0\)

c: Xét ΔAHB vuông tại H có

\(sinB=\dfrac{AH}{AB}\)

=>\(\dfrac{6}{AB}=\dfrac{\sqrt{3}}{2}\)

=>\(AB=4\sqrt{3}\left(cm\right)\)

=>\(BC=4\sqrt{3}\left(cm\right)\)

\(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{1}{2}\cdot6\cdot4\sqrt{3}=12\sqrt{3}\left(cm^2\right)\)

14 tháng 3 2023

a. Xét tam giác HAC và tam giác ABC, có:

\(\widehat{C}\) : chung

\(\widehat{AHC}=\widehat{BAC}=90^o\)

Vậy tam giác \(HAC\sim\) tam giác \(ABC\) ( g.g )

b.\(\Rightarrow\dfrac{AH}{AB}=\dfrac{AC}{BC}\) (1)

Áp dụng định lý pytago tam giác ABC, ta có:

\(BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+20^2}=25\left(cm\right)\)

\(\left(1\right)\Leftrightarrow AH=\dfrac{AC.AB}{BC}=\dfrac{20.15}{25}=12\left(cm\right)\)

c. Tam giác AHB có phân giác AD:

\(\Rightarrow\dfrac{AH}{AB}=\dfrac{HD}{BD}\) (2) 

(1)(2) \(\Rightarrow\dfrac{HD}{BD}=\dfrac{AC}{BC}\) hay \(\dfrac{BD}{HD}=\dfrac{BC}{AC}\)

 

12 tháng 5 2021

Đọc câu cuối thì chắc là chứng minh phản chứng đêý ạ ( Ngu lí thuyết, chắc thế.)
Đại khái cái cách này là bạn gọi 1 trong 3,4 điểm cần cm thẳng hàng ý trùng 1 điểm bâts kì thuộc (hoặc chứng minh được) thuộc đoạn thẳng có 2 mút là 2 điểm cần chứng minh ấy. Rồi từ dữ kiện đề bài => 2 điểm trùng nhau => thẳng hàng. Cơ bản mình hiểu là vậyyy ..

13 tháng 4 2022

sao FC lại song song me do cùng vuông góc hc được .CF vuông góc với tia phân giác góc MEC mà chỉ 

a: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC và AH là phân giác của góc BAC

=>góc BAH=góc CAH

b: \(BH=\sqrt{5^2-4^2}=3\left(cm\right)\)

c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

góc DAH=góc EAH

Do đó: ΔADH=ΔAEH

=>AD=AE

=>ΔADE cân tại A

b: Xét (O) có 

OH là một phần đường kính

AD là dây

OH\(\perp\)AD tại H

Do đó: H là trung điểm của AD

Suy ra: \(AH\cdot HD=AH^2\left(1\right)\)

Xét (O) có

ΔBAC nội tiếp đường tròn

BC là đường kính

Do đó: ΔBAC vuông tại A

Xét ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(BH\cdot HC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AH\cdot HD=HB\cdot HC\)