Tìm các giới hạn sau:
1/ \(\lim\limits_{x->-1}\) \(\dfrac{x^{2019}+1}{x^2+x}\)
2/ \(\lim\limits_{x->1}\) \(\dfrac{x+x^2+...+x^n-n}{x-1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. \(\lim\limits_{x\to 1+}(x^3+x+1)=3>0\)
\(\lim\limits_{x\to 1+}(x-1)=0\) và $x-1>0$ khi $x>1$
\(\Rightarrow \lim\limits_{x\to 1+}\frac{x^3+x+1}{x-1}=+\infty\)
b.
\(\lim\limits_{x\to -1+}(3x+2)=-1<0\)
\(\lim\limits_{x\to -1+}(x+1)=0\) và $x+1>0$ khi $x>-1$
\(\Rightarrow \lim\limits_{x\to -1+}\frac{3x+2}{x+1}=-\infty\)
c.
\(\lim\limits_{x\to 2-}(x-15)=-17<0\)
\(\lim\limits_{x\to 2-}(x-2)=0\) và $x-2<0$ khi $x<2$
\(\Rightarrow \lim\limits_{x\to 2-}\frac{x-15}{x-2}=+\infty\)
1: \(A=\dfrac{x^2-\left(a+1\right)x+a}{x^3-a^3}\)
\(=\dfrac{x^2-xa-x+a}{\left(x-a\right)\left(x^2+ax+a^2\right)}\)
\(=\dfrac{\left(x-a\right)\left(x-1\right)}{\left(x-a\right)\left(x^2+ax+a^2\right)}=\dfrac{x-1}{x^2+ax+a^2}\)
\(lim_{x->a}A=lim_{x->a}\left(\dfrac{x-1}{x^2+ax+a^2}\right)\)
\(=\dfrac{a-1}{a^2+a^2+a^2}=\dfrac{a-1}{3a^2}\)
2: \(B=\dfrac{1}{1-x}-\dfrac{3}{1-x^3}\)
\(=\dfrac{-1}{x-1}+\dfrac{3}{x^3-1}\)
\(=\dfrac{-x^2-x-1+3}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{-x^2-x+2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{-\left(x+2\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{-x-2}{x^2+x+1}\)
\(lim_{x->1}\left(B\right)=\dfrac{-1-2}{1^2+1+1}=\dfrac{-3}{3}=-1\)
3: \(C=\dfrac{\left(x+h\right)^3-x^3}{h}=\dfrac{\left(x+h-x\right)\left(x^2+2xh+h^2+x^2+hx+x^2\right)}{h}\)
\(=3x^2+3hx\)
\(lim_{h->0}\left(C\right)=3x^2+3\cdot0\cdot x=3x^2\)
Chúng ta tính giới hạn sau:
\(\lim\limits_{x\rightarrow1}\dfrac{1-\sqrt[n]{x}}{1-x}\)
Cách đơn giản nhất là sử dụng L'Hopital:
\(\lim\limits_{x\rightarrow1}\dfrac{1-x^{\dfrac{1}{n}}}{1-x}=\lim\limits_{x\rightarrow1}\dfrac{-\dfrac{1}{n}x^{\dfrac{1}{n}-1}}{-1}=\dfrac{1}{n}\)
Phức tạp hơn thì tách mẫu theo hằng đẳng thức
\(=\lim\limits_{x\rightarrow1}\dfrac{1-\sqrt[x]{n}}{\left(1-\sqrt[n]{x}\right)\left(1+\sqrt[n]{x}+\sqrt[n]{x^2}+...+\sqrt[n]{x^{n-1}}\right)}=\lim\limits_{x\rightarrow1}\dfrac{1}{1+\sqrt[n]{x}+\sqrt[n]{x^2}+...+\sqrt[n]{x^{n-1}}}=\dfrac{1}{n}\)
Tóm lại ta có:
\(\lim\limits_{x\rightarrow1}\dfrac{1-\sqrt[n]{x}}{1-x}=\dfrac{1}{n}\)
Do đó:
\(I_1=\lim\limits_{x\rightarrow1}\left(\dfrac{1-\sqrt[2]{x}}{1-x}\right)\left(\dfrac{1-\sqrt[3]{x}}{1-x}\right)...\left(\dfrac{1-\sqrt[n]{x}}{1-x}\right)=\dfrac{1}{2}.\dfrac{1}{3}...\dfrac{1}{n}=\dfrac{1}{n!}\)
Câu 2 cũng vậy: L'Hopital hoặc tách hằng đẳng thức trâu bò (thôi L'Hopital đi cho đỡ sợ)
\(I_2=\lim\limits_{x\rightarrow0}\dfrac{\left(\sqrt{1+x^2}+x\right)^n-\left(\sqrt{1+x^2}-x\right)^n}{x}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{n\left(\sqrt{1+x^2}+x\right)^{n-1}\left(\dfrac{x}{\sqrt{1+x^2}}+1\right)-n\left(\sqrt{1+x^2}-x\right)^{n-1}\left(\dfrac{x}{\sqrt{1+x^2}}-1\right)}{1}\)
\(=\dfrac{n.1-n\left(-1\right)}{1}=2n\)
\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x^2+1}-\left(x+1\right)}{2x^2-x}=\lim\limits_{x\rightarrow0}\dfrac{\left(\sqrt{x^2+1}-\left(x+1\right)\right)\left(\sqrt{x^2+1}+x+1\right)}{x\left(2x-1\right)\left(\sqrt{x^2+1}+x+1\right)}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{-2x}{x\left(2x-1\right)\left(\sqrt{x^2+1}+x+1\right)}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{-2}{\left(2x-1\right)\left(\sqrt{x^2+1}+x+1\right)}\)
\(=\dfrac{-2}{\left(0-1\right)\left(\sqrt{1}+1\right)}=1\)
a. \(\lim\limits_{x\rightarrow2}\dfrac{x-2}{x^2-4}=\lim\limits_{x\rightarrow2}\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}=\lim\limits_{x\rightarrow2}\dfrac{1}{x+2}=\dfrac{1}{4}\)
b. \(\lim\limits_{x\rightarrow3^-}\dfrac{x+3}{x-3}=\lim\limits_{x\rightarrow3^-}\dfrac{-x-3}{3-x}\)
Do \(\lim\limits_{x\rightarrow3^-}\left(-x-3\right)=-6< 0\)
\(\lim\limits_{x\rightarrow3^-}\left(3-x\right)=0\) và \(3-x>0;\forall x< 3\)
\(\Rightarrow\lim\limits_{x\rightarrow3^-}\dfrac{-x-3}{3-x}=-\infty\)
Tui nghĩ cái này L'Hospital chứ giải thông thường là ko ổn :)
\(M=\lim\limits_{x\rightarrow0}\dfrac{\left(1+4x\right)^{\dfrac{1}{2}}-\left(1+6x\right)^{\dfrac{1}{3}}}{1-\cos3x}=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{1}{2}\left(1+4x\right)^{-\dfrac{1}{2}}.4-\dfrac{1}{3}\left(1+6x\right)^{-\dfrac{2}{3}}.6}{3.\sin3x}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{-\dfrac{1}{4}.4\left(1+4x\right)^{-\dfrac{3}{2}}.4+\dfrac{2}{9}.6.6\left(1+6x\right)^{-\dfrac{5}{3}}}{3.3.\cos3x}\)
Giờ thay x vô là được
\(N=\lim\limits_{x\rightarrow0}\dfrac{\left(1+ax\right)^{\dfrac{1}{m}}-\left(1+bx\right)^{\dfrac{1}{n}}}{\left(1+x\right)^{\dfrac{1}{2}}-1}=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{1}{m}.\left(1+ax\right)^{\dfrac{1}{m}-1}.a-\dfrac{1}{n}\left(1+bx\right)^{\dfrac{1}{n}-1}.b}{\dfrac{1}{2}\left(1+x\right)^{-\dfrac{1}{2}}}=\dfrac{\dfrac{a}{m}-\dfrac{b}{n}}{\dfrac{1}{2}}\)
\(V=\lim\limits_{x\rightarrow0}\dfrac{\left(1+mx\right)^n-\left(1+nx\right)^m}{\left(1+2x\right)^{\dfrac{1}{2}}-\left(1+3x\right)^{\dfrac{1}{3}}}=\lim\limits_{x\rightarrow0}\dfrac{n\left(1+mx\right)^{n-1}.m-m\left(1+nx\right)^{m-1}.n}{\dfrac{1}{2}\left(1+2x\right)^{-\dfrac{1}{2}}.2-\dfrac{1}{3}\left(1+3x\right)^{-\dfrac{2}{3}}.3}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{n\left(n-1\right)\left(1+mx\right)^{n-2}.m-m\left(m-1\right)\left(1+nx\right)^{m-2}.n}{-\dfrac{1}{2}\left(1+2x\right)^{-\dfrac{3}{2}}.2+\dfrac{2}{9}.3.3\left(1+3x\right)^{-\dfrac{5}{3}}}=....\left(thay-x-vo-la-duoc\right)\)
1.
Trước hết bạn nhớ công thức:
$1^2+2^2+....+n^2=\frac{n(n+1)(2n+1)}{6}$ (cách cm ở đây: https://hoc24.vn/cau-hoi/tinh-tongs-122232n2.83618073020)
Áp vào bài:
\(\lim\frac{1}{n^3}[1^2+2^2+....+(n-1)^2]=\lim \frac{1}{n^3}.\frac{(n-1)n(2n-1)}{6}=\lim \frac{n(n-1)(2n-1)}{6n^3}\)
\(=\lim \frac{(n-1)(2n-1)}{6n^2}=\lim (\frac{n-1}{n}.\frac{2n-1}{6n})=\lim (1-\frac{1}{n})(\frac{1}{3}-\frac{1}{6n})\)
\(=1.\frac{1}{3}=\frac{1}{3}\)
2.
\(\lim \frac{1}{n}\left[(x+\frac{a}{n})+(x+\frac{2a}{n})+...+(x.\frac{(n-1)a}{n}\right]\)
\(=\lim \frac{1}{n}\left[\underbrace{(x+x+...+x)}_{n-1}+\frac{a(1+2+...+n-1)}{n} \right]\)
\(=\lim \frac{1}{n}[(n-1)x+a(n-1)]=\lim \frac{n-1}{n}(x+a)=\lim (1-\frac{1}{n})(x+a)\)
\(=x+a\)
a/ \(\lim\limits_{x\rightarrow2}\dfrac{2+3}{4+2+4}=\dfrac{5}{10}=\dfrac{1}{2}\)
b/ \(\lim\limits_{x\rightarrow-3}\dfrac{\left(x+2\right)\left(x+3\right)}{x\left(x+3\right)}=\lim\limits_{x\rightarrow-3}\dfrac{x+2}{x}=\dfrac{-3+2}{-3}=\dfrac{1}{3}\)
Lời giải:
1.
\(\lim\limits_{x\to -1}\frac{x^{2019}+1}{x^2+x}=\lim\limits_{x\to -1}\frac{(x+1)(x^{2018}-x^{2017}+x^{2016}-....-x+1)}{x(x+1)}=\lim\limits_{x\to -1}\frac{x^{2018}-x^{2017}+x^{2016}-....-x+1}{x}\)
\(=\frac{(-1)^{2018}-(-1)^{2017}+(-1)^{2016}+....-(-1)+1}{-1}\)
\(=\frac{\underbrace{1+1+....+1+1}_{2019}}{-1}=\frac{2019}{-1}=-2019\)
2.
\(\lim\limits_{x\to 1}\frac{(x-1)+(x^2-1)+(x^3-1)+....+(x^n-1)}{x-1}\\ =\lim\limits_{x\to 1}\frac{(x-1)+(x-1)(x+1)+(x-1)(x^2+x+1)+....+(x-1)(x^{n-1}+x^{n-2}+...+x+1)}{x-1}\)
$\lim\limits_{x\to 1}[1+(x+1)+(x^2+x+1)+....+(x^{n-1}+x^{n-2}+...+x+1)]$
$=1+2+3+....+n=n(n+1):2$
\(\)