Cho a+b+c=0.CM
a^3+b^3+c^3=3abc
Mong cb giúp đỡ mình ^_^
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a+b+c+d=0
=>a+b=-(c+d)
=> (a+b)^3=-(c+d)^3
=> a^3+b^3+3ab(a+b)=-c^3-d^3-3cd(c+d)
=> a^3+b^3+c^3+d^3=-3ab(a+b)-3cd(c+d)
=> a^3+b^3+c^3+d^3=3ab(c+d)-3cd(c+d) ( vi a+b = - (c+d))
==> a^3 +b^3+c^3+d^3==3(c+d)(ab-cd) (dpcm)
\(a+b+c=0\Rightarrow b+c=-a\)
\(\Rightarrow\left(b+c\right)^2=a^2\) \(\Rightarrow b^2+c^2+2bc=a^2\)
\(\Rightarrow a^2-b^2-c^2=2bc\)
Tương tự: \(b^2-c^2-a^2=2ca\) ; \(c^2-a^2-b^2=2ab\)
Mặt khác ta có:
\(a+b+c=0\Rightarrow a+b=-c\Rightarrow\left(a+b\right)^3=-c^3\)
\(\Rightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)
\(\Rightarrow a^3+b^3+c^3=-3ab\left(a+b\right)=-3ab\left(-c\right)=3abc\)
Đặt vế trái biểu thức cần chứng minh là P
\(\Rightarrow P=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ca}+\dfrac{c^2}{2ab}=\dfrac{a^3+b^3+c^3}{2abc}=\dfrac{3abc}{2abc}=\dfrac{3}{2}\) (đpcm)
Quản lý ko duyệt vậy t copy bài của bạn Lê anh tú CTV nhé
áp dụng dãy tỉ số = nhau ta được
\(\Leftrightarrow\frac{\left(ab+ac\right)+\left(bc+ba\right)-\left(ca+cb\right)}{2+3-4}=\frac{\left(ab+ab\right)+\left(bc-bc\right)+\left(ac-ac\right)}{1}=\frac{2ab}{1}\)
tương tự
\(\frac{\left(ab+ac\right)+\left(ca+cb\right)-\left(bc+ba\right)}{2+4-3}=\frac{\left(ab-ab\right)+\left(ac+ac\right)+\left(cb-cb\right)}{3}=\frac{2ac}{3}\)
tương tự
\(\frac{\left(bc+ba\right)+\left(ca+cb\right)-\left(ab+ac\right)}{3+4-2}=\frac{\left(cb+cb\right)+\left(ba-ba\right)+\left(ca-ca\right)}{5}=\frac{2cb}{5}\)
từ 1,2,3 ta sy ra
\(\frac{2ab}{1}=\frac{2ac}{3}=\frac{2cb}{5}\)
\(\frac{2ba}{1}=\frac{2bc}{5}\) " vì 2b=2b" suy ra \(\frac{a}{1}=\frac{c}{5}\)" nhân 3 cho mẫu số của 2 vế ta được \(\frac{a}{3}=\frac{c}{15}\) " 1"
tương tự với \(\frac{2ca}{3}=\frac{2cb}{5}\) " vì 2c=2c suy ra \(\frac{a}{3}=\frac{b}{5}\) "2"
từ 1 và 2 suy ra \(\frac{a}{3}=\frac{b}{5}=\frac{c}{15}\)
\(a+b+c=0\Rightarrow a+b=-c\)
\(\Rightarrow a^3+b^3+3a^2b+3ab^2=-c^3\)
\(\Rightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)
mà a+b= -c (cmt )
nên \(a^3+b^3+c^3=3abc\left(đpcm\right)\)
\(a+b+c=0\Rightarrow c=-a-b\)
\(\Rightarrow a^3+b^3+c^3=a^3+b^3+\left(-a-b\right)^3=a^3+b^3-a^3-3a^2b-3ab^2-b^3\)
\(=-3a^2b-3ab^2=3ab\left(-a-b\right)=3abc\) (đpcm)