phân tích đa thức thành nhân tử
a, 49x-xy^2+4xy-4x
b, (a-b)^2-(b-a)(a-3b)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=x\left(2x-y\right)+\left(2x-y\right)=\left(x+1\right)\left(2x-y\right)\\ b,=\left(a+b\right)\left(c-2\right)\\ c,=x\left(x+4y\right)+2\left(x+4y\right)=\left(x+2\right)\left(x+4y\right)\\ d,=x\left(x+2y\right)+3\left(x+2y\right)=\left(x+3\right)\left(x+2y\right)\)
Bài 1:
a: Ta có: \(\left(6x+3\right)-\left(2x-5\right)\left(2x+1\right)\)
\(=\left(2x+1\right)\left(3-2x+5\right)\)
\(=\left(2x+1\right)\left(8-2x\right)\)
\(=2\left(4-x\right)\left(2x+1\right)\)
b) Ta có: \(\left(3x-2\right)\left(4x-3\right)-\left(2-3x\right)\left(x-1\right)-2\left(3x-2\right)\left(x+1\right)\)
\(=\left(3x-2\right)\left(4x-3\right)+\left(3x-2\right)\left(x-1\right)-\left(3x-2\right)\left(2x+2\right)\)
\(=\left(3x-2\right)\left(4x-3+x-1-2x-2\right)\)
\(=\left(3x-2\right)\left(3x-6\right)\)
\(=3\left(3x-2\right)\left(x-2\right)\)
Bài 2:
a: Ta có: \(\left(a-b\right)\left(a+2b\right)-\left(b-a\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)
\(=\left(a-b\right)\left(a+2b\right)+\left(a-b\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)
\(=\left(a-b\right)\left(a+2b+2a-b-a-3b\right)\)
\(=\left(a-b\right)\left(2a-4b\right)\)
\(=2\left(a-b\right)\left(a-2b\right)\)
f: Ta có: \(x^2-6xy+9y^2+4x-12y\)
\(=\left(x-3y\right)^2+4\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x-3y+4\right)\)
\(a,15a^2b^3+5a^3b^2=5a^2b^2\left(3b+a\right)\\ b,x^2-2x+1-y^2=\left(x-1\right)^2-y^2=\left(x-y-1\right)\left(x+y-1\right)\)
a) 15a2b3+5a3b2=5a2b2(3b+a)
b) x2-2x+x-y2=( x2-y2)-(2x+x)
=(x-y)(x+y)-x(2-1)
=(x-y)(x+y)-x3
a: \(x^2-4xy+4y^2-2x+4y-35\)
\(=\left(x^2-4xy+4y^2\right)-\left(2x-4y\right)-35\)
\(=\left(x-2y\right)^2-2\left(x-2y\right)-35\)
\(=\left(x-2y\right)^2-7\left(x-2y\right)+5\left(x-2y\right)-35\)
\(=\left(x-2y\right)\left(x-2y-7\right)+5\left(x-2y-7\right)\)
\(=\left(x-2y-7\right)\left(x-2y+5\right)\)
c: \(\left(xy+ab\right)^2+\left(ay-bx\right)^2\)
\(=x^2y^2+a^2b^2+2xyab+a^2y^2-2aybx+b^2x^2\)
\(=x^2y^2+a^2y^2+a^2b^2+b^2x^2\)
\(=y^2\left(x^2+a^2\right)+b^2\left(a^2+x^2\right)\)
\(=\left(x^2+a^2\right)\left(y^2+b^2\right)\)
Bài 2
a) 5x² + 30y
= 5(x² + 6y)
b) x³ - 2x² - 4xy² + x
= x(x² - 2x - 4y² + 1)
= x[(x² - 2x + 1) - 4y²]
= x[(x - 1)² - (2y)²]
= x(x - 1 - 2y)(x - 1 + 2y)
Bài 3:
a: \(2x\left(x-3\right)-x+3=0\)
=>\(2x\left(x-3\right)-\left(x-3\right)=0\)
=>(x-3)(2x-1)=0
=>\(\left[{}\begin{matrix}x-3=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{2}\end{matrix}\right.\)
b: \(\left(3x-1\right)\left(2x+1\right)-\left(x+1\right)^2=5x^2\)
=>\(6x^2+3x-2x-1-x^2-2x-1=5x^2\)
=>\(5x^2-x-2=5x^2\)
=>-x-2=0
=>-x=2
=>x=-2
a) \(3x\left(2x-y\right)+5y\left(y-2x\right)\)
\(=3x\left(2x-y\right)-5y\left(2x-y\right)\)
\(=\left(3x-5y\right)\left(2x-y\right)\)
b) \(\left(x-5\right)^2-9\left(x+y\right)^2\)
\(=\left(x-5\right)^2-3^2\left(x+y\right)^2\)
\(=\left(x-5\right)^2-\left(3x+3y\right)^2\)
\(=\left(x-5+3x+3y\right)\left(x-5-3x-3y\right)\)
\(=\left(4x+3y-5\right)\left(-2x-3y-5\right)\)
a: \(3x\left(2x-y\right)+5y\left(y-2x\right)=\left(2x-y\right)\left(3x-5y\right)\)
e: \(x^2-10x+24=\left(x-4\right)\left(x-6\right)\)
a: Ta có: \(x^2-6x+9-y^2\)
\(=\left(x-3\right)^2-y^2\)
\(=\left(x-y-3\right)\left(x+y-3\right)\)
b: Ta có: \(x^3+4x^2+4x\)
\(=x\left(x^2+4x+4\right)\)
\(=x\left(x+2\right)^2\)
c: Ta có: \(4xy-4x^2-y^2+9\)
\(=-\left(4x^2-4xy+y^2-9\right)\)
\(=-\left(2x-y-3\right)\left(2x-y+3\right)\)
b = x.(x2 + 6x + 9 - 4y2 ) =x.((x+3)2 -4y2 )= x.(x+3-2y).(x+3+2y)
c = (x2 - 2x)+(2y-xy) = x.(x-2) +y.(2-x)= x.(x-2) + y.(-x+2)= x.(x-2) - y.(x-2) = (x-y).(x-2)
d = (x2 +1)2 - 4x2 = (x2 + 1 - 2x).(x2 +1 +2x) = (x-1)2 . (x+1)2
a = (7x)2 - (0.5y)2 = (7x - 0,5y).(7x+0,5y)
Bài 4:
Ta có: \(\left(x^3-x^2\right)-4x^2+8x-4=0\)
\(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)