một công ty dự điịnh chi không quá 900 tr đồng để quảng cáo trên VTV1 Biết rằng giá quảng cáo trên VTV1 là 30tr đồng cho 1 lần phát vào khung giờ I và 6tr cho 1 lần phát khung giờ II GỌI x , y lần lượt là số lần phát quảng cáo vào khung giờ I và II Hãy thiết lập bpt thể hiện số tiền mà cty này ph trả theo x và y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C
+ Gọi thời lượng công ty đặt quảng cáo trên sóng phát thanh là x (phút), trên truyền hình là y (phút). Chi phí cho việc này là:800.000x + 4.000.000y (đồng)
Mức chi này không được phép vượt qúa mức chi tối đa, tức:
800.000x+ 4.000.000y ≤ 16.000.000 hay x+ 5y-20 ≤ 0
Do các điều kiện đài phát thanh, truyền hình đưa ra, ta có:x ≥ 5 và y ≤ 4
Đồng thời do x; y là thời lượng nên x; y ≥ 0
Hiệu quả chung của quảng cáo là x+ 6y.
Bài toán trở thành: Xác định x; y sao cho:
M( x; y) = x + 6y đạt giá trị lớn nhất.
Với các điều kiện :
Trước tiên ta xác định miền nghiệm của hệ bất phương trình (*)
+Trong mặt phẳng tọa độ vẽ các đường thẳng
(d) : x + 5y - 20= 0 và (d’) ; x = 5; ( d’’) y = 4.
Khi đó miền nghiệm của hệ bất phương trình (*) là phần mặt phẳng(tam giác) không tô màu trên hình vẽ
Giá trị lớn nhất của M( x; y) =x+ 6y đạt tại một trong các điểm (5;3) ; ( 5;0) và ( 20; 0).
Ta có M (5; 3) = 23; M( 5; 0) = 5 và M( 20; 0) = 20.
+ Suy ra giá trị lớn nhất của M( x; y) bằng 23 tại ( 5; 3) tức là nếu đặt thời lượng quảng cáo trên sóng phát thanh là 5 phút và trên truyền hình là 3 phút thì sẽ đạt hiệu quả nhất.
Gọi x, y lần luợt là số lần phát quảng cáo vào khoảng 20h30 và vào khung giờ 16h00-17h00. \((x,y \in \mathbb{N})\)
Trong toán học, các điều kiện để đáp ứng nhu cầu trên của công ty đuợc thể hiện là:
+) ít nhất 10 lần quảng cáo vào khoảng 20h30: \(x \ge 10\)
+) không quá 50 lần quảng cáo vào khung giờ 16h00-17h00: \(y \le 50\)
+) chi không quá 900 triệu đồng: \(30.x + 6.y \le 900\)
Tham khảo:
Gọi x và y là số giây quảng cáo trên đài phát thanh và trên truyền hình.
Khi đó \(x \ge 0;y \ge 0\)
160 triệu đồng=160000 (nghìn đồng)
Chi phí quảng cáo x giây trên đài phát thanh và y giây trên truyền hình là \(80x + 400y\)(nghìn đồng)
Vì công ty dự chi tối đa 160 triệu đồng nên ta có
\(80x + 400y \le 160000\)\( \Leftrightarrow x + 5y \le 2000\)
Đài phát thanh chỉ nhận các quảng cáo có tổng thời lượng trong một tháng tối đa là 900 giây nên ta có: \(x \le 900\)
Đài truyền hình chỉ nhận các quảng cáo có tổng thời lượng trong một tháng tối đa là 360 giây nên ta có: \(y \le 360\)
Ta có hệ bất phương trình:
\(\left\{ {\begin{array}{*{20}{l}}
{x \ge 0}\\
{y \ge 0}\\
{x + 5y \le 2000}\\
{x \le 900}\\
{y \le 360}
\end{array}} \right.\)
Xác định miền nghiệm là miền ngũ giác OABCD với:
A(900;0); B(900;220); C(200;360); D(0;360)
Hiệu quả quảng cáo là: \(F\left( {x;y} \right) = x + 8y\)
Ta có:
\(F\left( {0;0} \right) = 0\)
\(F\left( {900;0} \right) = 900 + 8.0 = 900\)
\(F\left( {900;220} \right) = 900 + 8.220 = 2660\)
\(F\left( {200;360} \right) = 3080\)
\(F\left( {0;360} \right) = 2880\)
Vậy công ty cần đặt thời gian quảng cáo trên đài phát thanh là 200 giây và trên truyền hình là 360 giây thì hiệu quả nhất.
Đáp án C
Giả sử có n máy thì chi phí cố định là
50 n n = 1 ; 2 ; 3...8
Để in 50000 tờ cần 5000 3600. n = 125 9 n (giờ in).
Chi phí cho n máy chạy trong một giờ là 10 6 n + 10 nghìn đồng.
Khi đó, tổng chi phí để in 50000 tờ quảng cáo là:
f n = 50 n + 10 6 n + 10 .125 9 n = 450 n 2 + 7500 n + 1250 9 n
( Đến đây các em có thể thay 4 giá trị xem giá trị nào cho kết quả nhỏ nhất).
Ta có: f ' n = 0 ⇔ n = 5 3 10 ≈ 5 , 27
Lại có: f 5 < f 6 nên ta cần sử dụng 5 máy để chi phí nhỏ nhất.
Đáp án C
Giả sử có n máy thì chi phí cố định là 50n ( n = 1 ; 2 ; 3 ; . . . . ; 8 )
Để tin 50000 tờ cần 5000 3600 n = 125 9 n (giờ in)
Chi phí cho n máy chạy trong một giờ là: 10(6n + 10) nghìn đồng
Khi đó, tổng chi phí để in 50000 tờ quảng cáo là :
(thay 4 giá trị xem giá trị nào cho kết quả nhỏ nhất)
Lại có f(5) < f(6) nên ta sử dụng 5 máy để chi phí nhỏ nhất
\(\left\{{}\begin{matrix}30x+6y\le900\\x\ge0\\y\ge0\end{matrix}\right.\)