So sánh: \(\frac{7}{8}\)và \(\frac{8}{9}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A. \(\frac{3}{4}\) x \(\frac{8}{9}\)x \(\frac{15}{16}\)x .... x \(\frac{899}{900}\)
= \(\frac{1.3}{2^2}\) x \(\frac{2.4}{3^3}\)x \(\frac{3.5}{4^2}\)x ... x \(\frac{29.31}{30^2}\)
= \(\left(\frac{1.2.3...29}{2.3.4...30}\right).\left(\frac{3.4.5...31}{2.3.4...30}\right)\)
= \(\frac{1}{30}.\frac{31}{2}\)= \(\frac{31}{60}\)
B.
\(\frac{1}{3}+\frac{3}{8}-\frac{7}{12}=\frac{8}{24}+\frac{9}{24}-\frac{14}{24}=\frac{8+9-14}{24}=\frac{3}{24}=\frac{1}{8}\)
Ta có:
1 = \(\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+............+\frac{1}{10}\)(10 phân số \(\frac{1}{10}\))
Mà \(\frac{1}{2}>\frac{1}{10};\frac{2}{3}>\frac{1}{10};............;\frac{9}{10}>10\)
\(\Rightarrow M>1\)
Vậy M > 1
dễ Thấy rằng :
\(\frac{1}{5}>\frac{1}{10}\text{ nên }\frac{1}{5}+\left(\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}\right)>\frac{1}{10}+\left(\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}\right)\)
Vậy ta có a > b
A = 1/5 + 1/6 + 1/7 + 1/8 + 1/9
B = 1/6 + 1/7 + 1/8 + 1/9 + 1/10
Ta thấy cả A và B đều có các số hạng là 1/6; 1/7; 1/8 và 1/9.
Bỏ các số hạng đó, A chỉ còn 1/5 và B chỉ còn 1/10.
Vì 1/5 > 1/10 nên A > B.
Chúc bạn học tốt.
😁😁😁
Ta có :
\(S=\frac{3}{2}+\frac{4}{3}+\frac{5}{4}+\frac{6}{5}+\frac{7}{6}+\frac{8}{7}+\frac{9}{8}+\frac{10}{9}+\frac{11}{10}+\frac{12}{11}\)
\(S=\frac{2+1}{2}+\frac{3+1}{3}+\frac{4+1}{4}+...+\frac{11+1}{11}\)
\(S=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{4}\right)+...+\left(1+\frac{1}{11}\right)\)
\(S=\left(1+1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{11}\right)\)
\(S=10+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{11}\right)>10\)
\(\Rightarrow\)\(S>10\)
Vậy \(S>10\)
Chúc bạn học tốt ~
<=>\(\frac{63}{72}=\frac{64}{72}\)
vì 63<64
Nên\(\frac{7}{8}< \frac{8}{9}\)
So sánh hai phân số : \(\frac{7}{8}\)và \(\frac{8}{9}\).
Vì cả tử và mẫu của phân số \(\frac{7}{8}\)đều bé hơn mẫu và tử của phân số \(\frac{8}{9}\).
=> \(\frac{7}{8}< \frac{8}{9}\)