K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2016

đặt a/2003=b/2005=c/2007=t

=>a=2003t;b=2005t;c=2007t

ta có:\(VT=\frac{\left(a-c\right)^2}{4}=\frac{\left(2003t-2007t\right)^2}{4}=\frac{\left(-4t\right)^2}{4}=\frac{\left(-4\right)^2.t^2}{4}=\frac{16.t^2}{4}=\frac{4.4.t^2}{4}=4t^2\) (1)

\(VP=\left(a-b\right)\left(b-c\right)=\left(2003t-2005t\right)\left(2005t-2007t\right)=\left(-2\right).t.\left(-2\right).t=\left[\left(-2\right).\left(-2\right)\right].t^2=4t^2\left(2\right)\)

từ (1);(2) ta có VT=VP=>đpcm

27 tháng 12 2015

\(\frac{a}{n+2}=\frac{b}{n+5}=\frac{c}{n+8}=k\Leftrightarrow a=nk+2k;b=nk=5k;c=nk+8k\)

\(\left(a+c\right)^2=\left(nk+2k+nk+8k\right)^2=4k^2\left(n+5\right)^2\) ( sai nhế)

\(4\left(a-b\right)\left(b-c\right)=4\left(nk+2k-nk-5k\right)\left(nk+5k-nk-8k\right)=4\left(-3k\right)\left(-3k\right)=36k^2\)

\(\left(a-c\right)^2=\left(nk+2k-nk-8k\right)^2=4\left(-6k\right)^2=36k^2\)

=> \(\left(a-c\right)^2=4\left(a-b\right)\left(b-c\right)\)

 

1 tháng 12 2019

sai đề

1 tháng 12 2019

\(\frac{a}{\left(a+1\right)\left(b+1\right)}+\frac{b}{\left(b+1\right)\left(c+1\right)}\frac{c}{\left(c+1\right)\left(a+1\right)}\ge\frac{3}{4}\)

Bn giúp mình vs ạ

31 tháng 10 2016

Ta có : \(\frac{a}{2009}=\frac{b}{2011}=\frac{c}{2013}=\frac{a-b}{-2}=\frac{b-c}{-2}=\frac{a-c}{-4}\)

\(=>\frac{\left(a-c\right)^2}{16}=\left(\frac{a-b}{-2}\right).\left(\frac{b-c}{-2}\right)=\frac{\left(a-b\right).\left(b-c\right)}{4}\)

\(=>\frac{\left(a-c\right)^2}{4}=\left(a-b\right).\left(b-c\right)\)

31 tháng 10 2016

Áp dụng t/c dãy tỉ số bằng nhau,ta có:

\(\frac{a}{2009}=\frac{b}{2011}=\frac{a-b}{2009-2011}=\frac{a-b}{-2}\)

\(\frac{b}{2011}=\frac{c}{2013}=\frac{b-c}{2011-2013}=\frac{b-c}{-2}\)

\(\frac{a}{2009}=\frac{c}{2013}=\frac{a-c}{2009-2013}=\frac{a-c}{-4}\)

=> \(\frac{a-b}{-2}=\frac{b-c}{-2}=\frac{a-c}{-4}\)

=> \(\frac{a-b}{-2}.\frac{b-c}{-2}=\left(\frac{a-c}{4}\right)^2\)

=> \(\frac{\left(a-c\right)^2}{4^2}=\frac{\left(a-b\right)\left(b-c\right)}{4}\)

=> \(\frac{\left(a-c\right)^2}{4}=\left(a-c\right)\left(b-c\right)\)

31 tháng 10 2016

Ta có : \(\frac{a}{2009}=\frac{b}{2011}=\frac{c}{2013}=\frac{a-b}{-2}=\frac{b-c}{-2}=\frac{a-c}{-4}\)

\(=>\frac{\left(a-c\right)^2}{16}=\left(\frac{a-b}{-2}\right).\left(\frac{b-c}{-2}\right)=\frac{\left(a-b\right).\left(b-c\right)}{4}\)

\(=>\frac{\left(a-c\right)^2}{4}=\left(a-b\right).\left(b-c\right)\)

19 tháng 2 2020

bđt trái dấu rồi nha!

\(P=\frac{a^3}{\left(b+1\right)\left(c+1\right)}+\frac{b^3}{\left(c+1\right)\left(a+1\right)}+\frac{c^3}{\left(a+1\right)\left(b+1\right)}\ge\frac{3}{4}\)

+ Áp dụng bđt Cauchy ta có :

\(\frac{a^3}{\left(b+1\right)\left(c+1\right)}+\frac{b+1}{8}+\frac{c+1}{8}\ge3\sqrt[3]{\frac{a^3}{\left(b+1\right)\left(c+1\right)}\cdot\frac{b+1}{8}\cdot\frac{c+1}{8}}=\frac{3}{4}a\). Dấu "=" \(\Leftrightarrow\left\{{}\begin{matrix}2a=b+1\\b=c\end{matrix}\right.\)

+ Tương tự ta c/m đc : \(\frac{b^3}{\left(c+1\right)\left(a+1\right)}+\frac{a+1}{8}+\frac{c+1}{8}\ge\frac{3}{4}b\). Dấu "=" \(\Leftrightarrow\left\{{}\begin{matrix}2b=a+1\\a=c\end{matrix}\right.\)

\(\frac{c^3}{\left(a+1\right)\left(b+1\right)}+\frac{a+1}{8}+\frac{b+1}{8}\ge\frac{3}{4}c\). Dấu "=" \(\Leftrightarrow2c=a+1=b+1\)

Do đó : \(P\ge\frac{3}{4}\left(a+b+c\right)-\frac{1}{4}\left(a+b+c\right)-\frac{3}{4}=\frac{1}{2}\left(a+b+c\right)-\frac{3}{4}\) \(\ge\frac{1}{2}\cdot3\sqrt[3]{abc}-\frac{3}{4}=\frac{3}{4}\)

Dấu "=" \(\Leftrightarrow a=b=c=1\)

AH
Akai Haruma
Giáo viên
10 tháng 3 2019

Lời giải:

Từ \(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)

\(\Rightarrow \frac{a}{b-c}=-\left(\frac{b}{c-a}+\frac{c}{a-b}\right)=-\frac{ba-b^2+c^2-ca}{(c-a)(a-b)}\)

\(\Rightarrow \frac{a}{(b-c)^2}=-\frac{ba-b^2+c^2-ca}{(a-b)(b-c)(c-a)}\)

Hoàn toàn tương tự:

\(\frac{b}{(c-a)^2}=-\frac{a^2-ab+bc-c^2}{(a-b)(b-c)(c-a)}\); \(\frac{c}{(a-b)^2}=-\frac{ac-a^2+b^2-bc}{(a-b)(b-c)(c-a)}\)

Cộng theo vế những điều vừa thu được ta có:

\(\frac{a}{(b-c)^2}+\frac{b}{(c-a)^2}+\frac{c}{(a-b)^2}=-\frac{ba-b^2+c^2-ca+a^2-ab+bc-c^2+ac-a^2+b^2-bc}{(a-b)(b-c)(c-a)}=0\)

Ta có đpcm.

23 tháng 3 2019

⇒ab−c=−(bc−a+ca−b)=−ba−b2+c2−ca(c−a)(a−b)⇒ab−c=−(bc−a+ca−b)=−ba−b2+c2−ca(c−a)(a−b)

⇒a(b−c)2=−ba−b2+c2−ca(a−b)(b−c)(c−a)⇒a(b−c)2=−ba−b2+c2−ca(a−b)(b−c)(c−a)

Hoàn toàn tương tự:

b(c−a)2=−a2−ab+bc−c2(a−b)(b−c)(c−a)b(c−a)2=−a2−ab+bc−c2(a−b)(b−c)(c−a); c(a−b)2=−ac−a2+b2−bc(a−b)(b−c)(c−a)c(a−b)2=−ac−a2+b2−bc(a−b)(b−c)(c−a)

Cộng theo vế những điều vừa thu được ta có:

a(b−c)2+b(c−a)2+c(a−b)2=−ba−b2+c2−ca+a2−ab+bc−c2+ac−a2+b2−bc(a−b)(b−c)(c−a)=0

NV
19 tháng 6 2020

Bạn tham khảo:

Câu hỏi của Mai Hương - Toán lớp 9 | Học trực tuyến

20 tháng 2 2017

2/ \(a\left(x-a\right)^2+b\left(x-b\right)^2=0\)

\(\Leftrightarrow\left(a+b\right)x^2-2\left(a^2+b^2\right)x+a^3+b^3=0\)

Với a = - b thì x = 0

Với a \(\ne\) - b thì ta có

\(\Delta'=\left(a^2+b^2\right)^2-\left(a+b\right)\left(a^3+b^3\right)=0\)

\(\Leftrightarrow-ab\left(a-b\right)^2=0\)

\(\Leftrightarrow a=b\)

Vậy ta có ĐPCM