Một đoạn mạch gồm 2 điện trở R1=6 om ×R=3 om mắc song song với nhau vào hai điểm có hiệu điện thế 6V A) Tính điện trở tương đương của đoạn mạch
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Điện trở mạch mắc song song
Cường độ dòng điện I = U/R = 6/2 = 3A
a. Điện trở tương đương của mạch:
\(R_{tđ}=\dfrac{R_1R_2}{R_1+R_2}=5\left(\Omega\right)\)
b. Cường độ dòng điện chạy qua điện trở R1 là:
\(I_1=\dfrac{U}{R_1}=2,4\left(A\right)\)
Cường độ dòng điện chạy qua điện trở R2 là:
\(I_2=\dfrac{U}{R_2}=2,4\left(A\right)\)
c. Điện trở tương đương của đoạn mạch lúc này là:
\(R_{tđ}'=R_{tđ}+R_đ=5+5=10\left(\Omega\right)\)
\(\dfrac{1}{R_{tđ}}=\dfrac{1}{R_1}+\dfrac{1}{R_2}+\dfrac{1}{R_3}=\dfrac{1}{10}+\dfrac{1}{10}+\dfrac{1}{10}=\dfrac{3}{10}\Omega\)
\(\Rightarrow R_{tđ}=\dfrac{10}{3}\Omega\)
\(U_1=U_2=U_3=U=12V\)
\(I=\dfrac{U}{R}=\dfrac{12}{\dfrac{10}{3}}=3,6A\)
\(I_1=I_2=I_3=\dfrac{U_1}{R_1}=\dfrac{12}{10}=1,2A\)
Nếu mắc nối tiếp:
\(R_{tđ}=R_1+R_2+R_3=10+10+10=30\Omega\)
a) Điện trở tương đương của mạch là:
\(\dfrac{1}{R_{td}}=\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{16}=\dfrac{5}{16}\)
\(\Rightarrow R_{td}=\dfrac{16}{5}=3,2\Omega\)
b) CĐDĐ của mạch chính là:
\(I=\dfrac{U}{R_{td}}=\dfrac{24}{3,2}=7,5A\)
Điện trở tương đương của mạch là:
\(R_{tđ}=\dfrac{R_1R_2}{R_1+R_2}=\dfrac{6\cdot3}{6+3}=\dfrac{18}{9}=2\Omega\)