Tìm x, biết:
\(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+...+\frac{1}{x\left(x+4\right)}=\frac{43}{552}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{3\left(x-1\right)\left(3x+3\right)}=\frac{3}{10}\)
\(\Rightarrow\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{4}{\left(3x-1\right)\left(3x+3\right)}=\frac{3}{10}\)
\(\Rightarrow\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{3x-1}-\frac{1}{3x+3}=\frac{3}{10}\)(Vì 3x + 3 lớn hơn 3x - 1 là 4 đơn vị)
\(\Rightarrow\frac{1}{3}-\frac{1}{3x+3}=\frac{3}{10}\)
\(\Rightarrow\frac{x+1-1}{3x+3}=\frac{3}{10}\)
\(\Rightarrow\frac{x}{3x+3}=\frac{3}{10}\)
\(\Rightarrow10x=3.\left(3x+3\right)\)
\(\Rightarrow10x=9x+9\)
\(\Rightarrow x=9\)
Vậy...
\(\Rightarrow\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-....-\frac{1}{3x+3}=\frac{3}{10}\)
\(\Rightarrow\frac{1}{3}-\frac{1}{3x+3}=\frac{3}{10}\)
\(\Rightarrow\frac{1}{3x+3}=\frac{1}{3}-\frac{3}{10}=\frac{1}{30}\)
Nên 3x + 3 = 30
3x = 30 - 3 = 27
x = 27 : 3 = 9
\(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+....+\frac{4}{\left(3x-1\right)\left(3x+3\right)}=\frac{3}{10}\)
\(\Rightarrow\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{3x-1}-\frac{1}{3x+3}=\frac{3}{10}\)
\(\Rightarrow\frac{1}{3}-\frac{1}{3x+3}=\frac{3}{10}\)
\(\Rightarrow\frac{1}{3x+3}=\frac{1}{3}-\frac{3}{10}=\frac{10}{30}-\frac{9}{30}=\frac{1}{30}\)
\(\Rightarrow\left(3x+3\right).1=1.30\Rightarrow3x+3=30\Rightarrow3x=27\Rightarrow x=9\)
\(E=\frac{\frac{4}{3\cdot7}-\frac{4}{11.15}}{1-\frac{3}{7}-\frac{3}{11}+\frac{1}{5}}-\left(\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2006.2007}\right)\)
\(=\frac{\frac{1}{3}-\frac{1}{7}-\frac{1}{11}+\frac{1}{15}}{\frac{192}{385}}-\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{2006}-\frac{1}{2007}\right)\)
\(=\frac{\frac{64}{385}}{\frac{192}{385}}-\left(\frac{1}{3}-\frac{1}{2007}\right)\)
\(=\frac{1}{3}-\left(\frac{1}{3}-\frac{1}{2007}\right)=\frac{1}{2007}\)
Vậy : \(E=\frac{1}{2007}\)
\(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+...+\frac{1}{x\left(x+4\right)}=\frac{43}{552}\)
\(\Leftrightarrow\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{x}-\frac{1}{x+4}\right)=\frac{43}{552}\)
\(\Leftrightarrow\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{x+4}\right)=\frac{43}{552}\)
\(\Leftrightarrow\frac{1}{3}-\frac{1}{x+4}=\frac{43}{552}\div\frac{1}{4}\)
\(\Leftrightarrow\frac{1}{3}-\frac{1}{x+4}=\frac{43}{138}\Leftrightarrow\frac{1}{x+4}=\frac{1}{3}-\frac{43}{138}\)
\(\Leftrightarrow\frac{1}{x+4}=\frac{1}{46}\Leftrightarrow x+4=46\Rightarrow x=46-4=42\)
Vậy x = 42
\(s=\frac{1}{3.7}+\frac{1}{7.11}+...+\frac{1}{x\left(x+4\right)}=\)\(\frac{43}{552}\)
\(\Rightarrow S=\frac{4}{4}\left(\frac{1}{3.7}+\frac{1}{7.11}+...+\frac{1}{x\left(x+4\right)}\right)=\frac{43}{552}\)
\(\Rightarrow S=\frac{1}{4}\left(\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{x\left(x+4\right)}\right)=\frac{43}{552}\)
\(\Rightarrow S=\frac{1}{4}\left(\frac{4}{3}-\frac{4}{7}+\frac{4}{7}-\frac{4}{11}+...+\frac{4}{x}-\frac{4}{x+4}\right)=\frac{43}{552}\)
\(\Rightarrow S=\frac{1}{4}\left(\frac{4}{3}-\frac{4}{x+4}\right)=\frac{43}{552}\)
\(\Rightarrow\frac{4}{3}-\frac{4}{x+4}=\frac{43}{552}:\frac{1}{4}\)
\(\frac{\Rightarrow4}{3}-\frac{4}{x+4}=\frac{43}{138}\)
\(\frac{\Rightarrow4}{x+4}=\frac{4}{3}-\frac{43}{138}=\frac{47}{46}\)
\(\Rightarrow x+4=4:\frac{47}{46}=\frac{184}{47}\)
\(\Rightarrow x=\frac{184}{47}-4=\frac{-4}{47}\)