Q=(\(\left(\dfrac{4\sqrt{x}}{x+2\sqrt{x}}+\dfrac{8\sqrt{x}}{4-x}\right)\) : \(\left(\dfrac{\sqrt{x}-1}{x-2\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\) với x≠4, x>0
a) rút gọn Q
b) tìm x để Q<4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(Q=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(A=\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+2\right)^2}:\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}+2\right)}+\dfrac{x}{\sqrt{x}+2}\right)\)
\(=\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+2\right)^2}:\left(\dfrac{\sqrt{x}}{\sqrt{x}+2}+\dfrac{x}{\sqrt{x}+2}\right)\)
\(=\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+2\right)^2}:\left(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+2}\right)\)
\(=\dfrac{\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+2\right)^2}.\dfrac{\left(\sqrt{x}+2\right)}{\sqrt{x}.\left(\sqrt{x}+1\right)}\)
\(=\dfrac{1}{\sqrt{x}\left(\sqrt{x}+2\right)}\)
\(A\ge\dfrac{1}{3\sqrt{x}}\Leftrightarrow\dfrac{1}{\sqrt{x}\left(\sqrt{x}+2\right)}\ge\dfrac{1}{3\sqrt{x}}\)
\(\Leftrightarrow\dfrac{1}{\sqrt{x}+2}\ge\dfrac{1}{3}\Leftrightarrow\sqrt{x}+2\le3\)
\(\Rightarrow x\le1\)
Kết hợp ĐKXĐ \(\Rightarrow0< x\le1\)
\(Q=\dfrac{x+3\sqrt{x}+2-2x+4\sqrt{x}-5\sqrt{x}-2}{x-4}\cdot\dfrac{\left(\sqrt{x}+2\right)^2}{\sqrt{x}\left(3-\sqrt{x}\right)}\)
\(=\dfrac{-x+2\sqrt{x}}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}+2}{\sqrt{x}\left(3-\sqrt{x}\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\)
Để Q<0 thì \(\sqrt{x}-3< 0\)
hay x<9
Kết hợp ĐKXĐ, ta được:
\(\left\{{}\begin{matrix}0< =x< 9\\x< >4\end{matrix}\right.\)
a) \(ĐK:x>0,x\ne1\)\(Q=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
\(=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{2}{x-1}\)
b) \(P=\dfrac{2}{x-1}\in Z\)
\(\Rightarrow x-1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
Kết hợp với đk
\(\Rightarrow x\in\left\{0;2;3\right\}\)
a) ĐKXĐ: \(x>0;x\ne4\)
\(Q=\left(\dfrac{\sqrt{x}-1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\right):\left(\dfrac{1}{\sqrt{x}}-\dfrac{1}{\sqrt{x}+1}\right)\)
\(=\left[\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}-\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\right]:\dfrac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-1-\left(x-4\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}:\dfrac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\dfrac{3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\cdot\sqrt{x}\left(\sqrt{x}+1\right)\)
\(=\dfrac{3\sqrt{x}}{\sqrt{x}-2}\)
b) Để biểu thức \(Q\) có giá trị âm thì \(\dfrac{3\sqrt{x}}{\sqrt{x}-2}< 0\)
\(\Rightarrow\sqrt{x}-2< 0\) (vì \(3\sqrt{x}>0\forall x>0;x\ne4\))
\(\Leftrightarrow\sqrt{x}< 2\Leftrightarrow0\le x< 4\)
Kết hợp với điều kiện xác định của \(x\), ta được: \(0< x< 4\)
\(\text{#}\mathit{Toru}\)
a) Ta có: \(Q=\left(\dfrac{x-1}{\sqrt{x}-1}-\dfrac{x\sqrt{x}-1}{x-1}\right):\left(\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)^2\)
\(=\left(\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}-\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{x-2\sqrt{x}+1+\sqrt{x}}{\sqrt{x}+1}\right)^2\)
\(=\left(\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)}-\dfrac{x+\sqrt{x}+1}{\sqrt{x}+1}\right):\left(\dfrac{x-\sqrt{x}+1}{\sqrt{x}+1}\right)^2\)
\(=\dfrac{x+2\sqrt{x}+1-x-\sqrt{x}-1}{\sqrt{x}+1}:\dfrac{\left(x-\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)^2}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}+1}\cdot\dfrac{\left(\sqrt{x}+1\right)^2}{\left(x-\sqrt{x}+1\right)^2}\)
\(=\dfrac{x+\sqrt{x}}{\left(x-\sqrt{x}+1\right)^2}\)
a) đk: x\(\ge0\);
P = \(\left[\dfrac{x+2}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}-\dfrac{1}{\sqrt{x}+1}\right].\dfrac{4\sqrt{x}}{3}\)
= \(\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}.\dfrac{4\sqrt{x}}{3}\)
= \(\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}.\dfrac{4\sqrt{x}}{3}=\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)
b) Để P = \(\dfrac{8}{9}\)
<=> \(\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\dfrac{8}{9}\)
<=> \(\dfrac{\sqrt{x}}{x-\sqrt{x}+1}=\dfrac{2}{3}\)
<=> \(\dfrac{3\sqrt{x}-2x+2\sqrt{x}-2}{3\left(x-\sqrt{x}+1\right)}=0\)
<=> \(-2x+5\sqrt{x}-2=0\)
<=> \(\left(\sqrt{x}-2\right)\left(2\sqrt{x}-1\right)=0\)
<=> \(\left[{}\begin{matrix}x=4\left(tm\right)\\x=\dfrac{1}{4}\left(tm\right)\end{matrix}\right.\)
c)
Đặt \(\sqrt{x}=a\) (\(a\ge0\))
P = \(\dfrac{4a}{3\left(a^2-a+1\right)}\)
Xét P + \(\dfrac{4}{9}\) = \(\dfrac{4a}{3a^2-3a+3}+\dfrac{4}{9}=\dfrac{12a+4a^2-4a+4}{9\left(a^2-a+1\right)}=\dfrac{4a^2+8a+4}{9\left(a^2-a+1\right)}=\dfrac{4\left(a+1\right)^2}{9\left(a^2-a+1\right)}\ge0\)
Dấu "=" <=> a = -1 (loại)
=> Không tìm được Min của P
Xét P - \(\dfrac{4}{3}\) = \(\dfrac{4a}{3\left(a^2-a+1\right)}-\dfrac{4}{3}=\dfrac{4a-4a^2+4a-4}{3\left(a^2-a+1\right)}=\dfrac{-4a^2+8a-4}{3\left(a^2-a+1\right)}=\dfrac{-4\left(a-1\right)^2}{3\left(a^2-a+1\right)}\le0\)
<=> \(P\le\dfrac{4}{3}\)
Dấu "=" <=> a = 1 <=> x = 1 (tm)
a: \(A=\left(\dfrac{\left(x-4\right)\left(\sqrt{x}+2\right)-x\sqrt{x}+8}{x-4}\right):\dfrac{x-2\sqrt{x}+4}{\sqrt{x}+2}\)
\(=\dfrac{x\sqrt{x}+2x-4\sqrt{x}-8-x\sqrt{x}+8}{x-4}\cdot\dfrac{\sqrt{x}+2}{x-2\sqrt{x}+4}\)
\(=\dfrac{2x-4\sqrt{x}}{\sqrt{x}-2}\cdot\dfrac{1}{x-2\sqrt{x}+4}=\dfrac{2\sqrt{x}}{x-2\sqrt{x}+4}\)
b: \(A-1=\dfrac{2\sqrt{x}-x+2\sqrt{x}-4}{x-2\sqrt{x}+4}\)
\(=\dfrac{-x+4\sqrt{x}-4}{x-2\sqrt{x}+4}=\dfrac{-\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-1\right)^2+3}< 0\)
=>A<1
c: \(2\sqrt{x}>=0;x-2\sqrt{x}+4=\left(\sqrt{x}-1\right)^2+3>0\)
=>A>=0 với mọi x thỏa mãn ĐKXĐ
mà A<1
nên 0<=A<1
=>Để A nguyên thì A=0
=>x=0
a: \(Q=\left(\dfrac{4\sqrt{x}}{x+2\sqrt{x}}+\dfrac{8\sqrt{x}}{4-x}\right):\left(\dfrac{\sqrt{x}-1}{x-2\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\)
\(=\left(\dfrac{4\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}-\dfrac{8\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\dfrac{\sqrt{x}-1-2\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\left(\dfrac{4}{\sqrt{x}+2}-\dfrac{8\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right)\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}-1-2\sqrt{x}+4}\)
\(=\dfrac{4\left(\sqrt{x}-2\right)-8\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{-\sqrt{x}+3}\)
\(=\dfrac{-4\sqrt{x}-8}{\sqrt{x}+2}\cdot\dfrac{\sqrt{x}}{-\left(\sqrt{x}-3\right)}=\dfrac{4\sqrt{x}}{\sqrt{x}-3}\)
b: Q<4
=>Q-4<0
=>\(\dfrac{4\sqrt{x}}{\sqrt{x}-3}-4< 0\)
=>\(\dfrac{4\sqrt{x}-4\sqrt{x}+12}{\sqrt{x}-3}< 0\)
=>\(\dfrac{12}{\sqrt{x}-3}< 0\)
=>\(\sqrt{x}-3< 0\)
=>0<=x<9
Kết hợp ĐKXĐ, ta được: 0<x<9 và x<>4
\(a,Q=\left(\dfrac{4\sqrt{x}}{x+2\sqrt{x}}+\dfrac{8\sqrt{x}}{4-x}\right):\left(\dfrac{\sqrt{x}-1}{x-2\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\\ =\left(\dfrac{4\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}-\dfrac{8\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{2}{\sqrt{x}}\right)\\ =\dfrac{4\sqrt{x}\left(\sqrt{x}-2\right)-8\sqrt{x}\cdot\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}:\dfrac{\sqrt{x}-1-2\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\\ =\dfrac{4x-8\sqrt{x}-8x}{\sqrt{x}\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}-1-2\sqrt{x}+4}\)
\(=\dfrac{-4x-8\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{-\sqrt{x}+3}\\ =\dfrac{-4\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{3-\sqrt{x}}\\ =\dfrac{-4\sqrt{x}}{3-\sqrt{x}}\)
`b,` Để `Q<4` ta có :
\(\dfrac{-4\sqrt{x}}{3-\sqrt{x}}< 4\\ \Leftrightarrow\dfrac{-4\sqrt{x}}{3-\sqrt{x}}-4< 0\\ \Leftrightarrow\dfrac{-4\sqrt{x}-4\left(3-\sqrt{x}\right)}{3-\sqrt{x}}< 0\\ \Leftrightarrow-4\sqrt{x}-12+4\sqrt{x}< 0\\ \Leftrightarrow-12< 0\left(luon.dung\right)\)