K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2017
 

Ta có:

112 =1;122 <11.2 ;132 <12.3 ;...;1502 <149.50 

=>A=112 +122 +132 +...+1502 <1+(11.2 +12.3 +...+149.50 )

                                                             =1+(112 +12 13 +...+149 150 )

                                                             =1+(1150 )

                                                             =1+1150 

                                                             =2150 <2

=> A < 2

26 tháng 10 2017

A=\(x^2-\frac{1}{3}x+1=x^2-2.\frac{1}{6}.x+\frac{1}{36}-\frac{1}{36}+1\)

\(=\left(x+\frac{1}{6}\right)^2+\frac{35}{36}\)

Do \(\left(x+\frac{1}{6}\right)^2\ge0\)nên \(\left(x+\frac{1}{6}\right)^2+\frac{35}{36}>0\)và GTNN của A là  \(\frac{35}{36}\)

26 tháng 10 2017

hình như cái khúc (x+1/2)^2 phải là (x-1/2)^2 chứ bạn mk k hỉu rõ bạn giải thích giùm mk nhé

9 tháng 1 2016

Gọi ƯCLN(n + 1; 2n + 3) = d

Ta có : n + 1 chia hết cho d => 2(n + 1) chia hết cho d => 2n + 2 chia hết cho d

             2n + 3 chia hết cho d

=> (2n + 3) - (2n + 2) chia hết cho d

=> 1 chia hết cho d

=> d = 1 hoặc -1

=> n + 1 và  2n + 3 nguyên tố cùng nhau

 

9 tháng 1 2016

Gọi ƯCLN(n + 1; 2n + 3) là d (d thuộc N*)

=> n + 1 chia hết cho d => 2(n + 1) chia hết cho d

     2n + 3 chia hết cho d 

=> (2n + 3) - 2(n + 1) chia hết cho d

=> 2n + 3 - 2n - 2 chia hết cho d

=> 1 chia hết cho d

=> d = 1 (Vì d thuộc N*)

=> ƯCLN(n + 1; 2n + 3) = 1

hay 2 số này nguyên tố cùng nhau

Vậy...

12 tháng 11 2015

=>B=(31+32)+(33+34)+...+(32009+32010)

=>B=3.(1+3)+33.(1+3)+...+32009.(1+3)

=>B=3.4+33.4+...+32009.4

=>B=4.(3+33+...+32009)  chia hết cho 4

=>B chia hết cho 4

     Ta có:

B=(31+32+33)+(34+35+36)+....+(32008+32009+32010)

=>B=3.(1+3+32)+34.(1+3+32)+...+32008.(1+3+32)

=>B=3.13+34.13+...+32008.13

=>B=13.(3+34+...+32008) chia hết cho 13

=>B chia hết cho 13 

12 tháng 11 2015

+ Ta có:

 B = 31 + 32 + 33 + 34 + ... + 32010

  = ( 31 + 32 + 33 ) + 33 ( 31 + 32 + 33 ) + ... + 32007 ( 31 + 32 + 33 )

= 39 + 33 . 39 + ... + 32007 . 39

= 39 ( 1 + 33 + ... + 32007 )

=>  B chia hết cho 39 mà 39 chia hết cho 13 nên B chia hết cho 13

 

19 tháng 10 2017

ọi k là một số nguyên, theo đề ta có: 
a=3k+1 
b=3k+2 
ab=(3k+1)(3k+2)=9k^2+9k+2 
vì 9k^2 và 9k chia hết cho 3 
nên ab chia 3 dư 2

19 tháng 10 2017

- Vì a chia cho 3 dư 1 nên a = 3m + 1 ( m \(\in\)N )

- Vì b chia cho 3 dư 2 nên b = 3n + 2 ( n\(\in\)N )

Ta có :

a . b = ( 3m + 1 ) ( 3n + 2 )

        = 3m . 3n + 3m . 2 + 1 . 3n + 1 . 2

        = ( 9 mn + 6m + 3n ) + 2

        = 3 ( 3mn + 2m + n ) + 2 ....

Vậy ab chia cho 3 dư 2 .