K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2023

S = 3 + 3² + 3³ + ... + 3⁹⁹ + 3¹⁰⁰

= 3 + (3² + 3³ + 3⁴) + (3⁵ + 3⁶ + 3⁷) + ... + (3⁹⁸ + 3⁹⁹ + 3¹⁰⁰)

= 3 + 3².(1 + 3 + 3²) + 3⁵.(1 + 3 + 3²) + ... + 3⁹⁸.(1 + 3 + 3²)

= 3 + 3².13 + 3⁵.13 + ... + 3⁹⁸.13

= 3 + 13.(3² + 3⁵ + ... + 3⁹⁸)

Do 13.(3² + 3⁵ + ... + 3⁹⁸) ⋮ 13

⇒ 3 + 13.(3² + 3⁵ + ... + 98) chia 13 dư 3

Vậy S chia 13 dư 3

2 tháng 2 2019

bn ấn vào cái hình có chữ M nằm ngang rồi viết lạ đề đc ko bn viết số mũ bn nhấn vào cái có chữ x rồi có cái hình vuông màu xám ở trên chữ x

2 tháng 2 2019

\(a,S=1-3+3^2-3^3+...+3^{98}-3^{99}\)

\(=\left(1-3+3^2-3^3\right)+...+3^{96}-3^{97}+3^{98}-3^{99}\)

\(=\left(1-3+3^2-3^3\right)+...+3^{96}\left(1-3+3^2-3^3\right)\)

\(=\left(1-3+3^2-3^3\right)\left(1+3^4+...+3^{92}+3^{96}\right)\)

\(=-20.\left(1+3^4+...+3^{92}+3^{96}\right)\)là bội của -20

2 tháng 2 2019

b, \(S=1-3+3^2-3^3+...+3^{98}-3^{99}\)

\(3S=3-3^2+3^3-3^4+...+3^{99}-3^{100}\)

\(3S+S=1-3^{100}\)

\(S=\frac{1-3^{100}}{4}\)

Do S chia hết cho -20 nên S chia hết cho 4 do đó 1-3^100 chia hết cho 4 suy ra 3^100 chia 4 dư 1

22 tháng 2 2020

a) S=\(1-3+3^2-3^3+...+3^{98}-3^{99}.\)

=\((1-3+3^2-3^3)+...+3^{96}-3^{97}+3^{98}-3^{99}.\)

=\(\left(1-3+3^2-3^3\right)+..+3^{96}\left(1-3+3^2-3^3\right)\)

=(\(1-3+3^2-3^3\))(1+\(3^4+...+3^{92}+3^{96})\)

=-20(1+\(3^4+...+3^{92}+3^{96})\)là bội của -20

22 tháng 2 2020

b)S = 1 - 3 + 3^2 - 3^3 +...+ 3^98 - 3^99

=> 3S= 3 - 3^2 + 3^3 - 3^4 +...+ 3^99 - 3^100

=> 3S+S = 1 - 3^100

=>4S=1 - 3^100

=> S = \(\frac{1-3^{100}}{^4}\)

Do S chia hết cho -20 nên S chia hết cho 4 do đó 1-3^100 chia hết cho 4 suy ra 3^100 chia 4 dư 1