Cho tam giác ABC vuông tại A ( AB < Ac ) có I là trung điểm của cạnh AC. Qua c kẻ đường thẳng song song với đường thằng AB, đường thằng này cắt tia BI tại D.
a) Chứng mình tam giác ABI = tam giác CDI và suy ra tứ giác ABCD là hình bình hành
b) Qua I kẻ đường thẳng IK // AB ( K thuộc BC ). Gọi H là chân đường vuông góc hạ từ K xuống cạnh AB. Chứng minh AK = IH
c) Gọi G là giao điểm của AK và BD. Chứng mình H,G,C thẳng hàng
a:
AB\(\perp\)AC
AB//CD
Do đó: CA\(\perp\)CD
Xét ΔABI vuông tại A và ΔCDI vuông tại C có
IA=IC
\(\widehat{AIB}=\widehat{CID}\)
Do đó:ΔABI=ΔCDI
=>AB=CD và IB=ID
Xét tứ giác ABCD có
AB//CD
AB=CD
Do đó: ABCD là hình bình hành
b: HK\(\perp\)AB
AC\(\perp\)AB
Do đó: HK//AC
Xét tứ giác AHKI có
AH//KI
AI//HK
Do đó: AHKI là hình bình hành
mà \(\widehat{IAH}=90^0\)
nên AHKI là hình chữ nhật
=>AK=HI