Tìm kết quả \(\frac{24}{400}+50\%+\)\(\frac{3}{100}+25\%\)
Tìm m \(\frac{2}{5}\)x m +25% x m + m = 16, 5
Trình bày hộ mình nha !!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\)\(M=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{399}{400}\)
\(M=\frac{4-1}{4}+\frac{9-1}{9}+\frac{16-1}{16}+...+\frac{400-1}{400}\)
\(M=1-\frac{1}{4}+1-\frac{1}{9}+1-\frac{1}{16}+...+1-\frac{1}{400}\)
\(M=\left(1+1+1+...+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{400}\right)\)
\(M=\left(1+1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{20^2}\right)\)
Do từ 2 đến 20 có \(20-2+1=19\) nên :
\(M=19-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{20^2}\right)\)
Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{20^2}\)
\(A>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{20.21}\)
\(A>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{20}-\frac{1}{21}\)
\(A>\frac{1}{2}-\frac{1}{21}\)
\(\Rightarrow\)\(M=19-A>19-\frac{1}{2}+\frac{1}{21}=18,5+\frac{1}{21}>8\)
\(\Rightarrow\)\(M>8\) ( đpcm )
Còn câu b) bn xem lại đề đi, nếu đề đúng thì mk sai :v
Chúc bạn học tốt ~
\(M=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+\frac{24}{25}...+\frac{399}{400}\)
\(=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+\left(1-\frac{1}{25}\right)+...+\left(1-\frac{1}{400}\right)\)
\(=\left(1+1+1+....+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{20^2}\right)\)
\(=19-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{20^2}\right)\)
Đặt \(N=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{20^2}\)
\(< P=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+....+\frac{1}{20\cdot21}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{20}-\frac{1}{21}\)
\(=\frac{1}{2}-\frac{1}{21}\)
\(\Rightarrow M+N>19-\frac{1}{2}+\frac{1}{21}=\frac{37}{2}+\frac{1}{21}>8\)
b sai đề.chừng nào chữa đề thì làm
Ta có \(M=\frac{\frac{3}{5}+\frac{3}{7}-\frac{3}{11}}{\frac{4}{5}+\frac{4}{7}-\frac{4}{11}}=\frac{3\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{11}\right)}{4\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{11}\right)}=\frac{3}{4}\)
mk sắp phải đi học rồi các bạn giúp mình với có đc ko mk nhớ sẽ đền đáp công ơn của bạn
\(A=\left(\frac{x}{x^2-25}-\frac{x-5}{x^2+5x}\right):\frac{2x-5}{x^2+5x}+\frac{x+3}{5-x}\)
\(=\left[\frac{x}{\left(x-5\right)\left(x+5\right)}-\frac{x-5}{x\left(x+5\right)}\right]:\frac{2x-5}{x\left(x+5\right)}+\frac{x+3}{5-x}\)
\(=\left[\frac{x^2}{x\left(x-5\right)\left(x+5\right)}-\frac{\left(x-5\right)^2}{x\left(x+5\right)\left(x-5\right)}\right]:\frac{2x-5}{x\left(x+5\right)}+\frac{x+3}{5-x}\)
\(=\left(\frac{x^2-\left(x-5\right)^2}{x\left(x-5\right)\left(x+5\right)}\right).\frac{x\left(x+5\right)}{2x-5}+\frac{x+3}{5-x}\)
\(=\left[\frac{\left(x-x+5\right)\left(x+x-5\right)}{x\left(x-5\right)\left(x+5\right)}\right].\frac{x\left(x+5\right)}{2x-5}+\frac{x+3}{5-x}\)
\(=\frac{5x.\left(2x-5\right)\left(x+5\right)}{x\left(x-5\right)\left(x+5\right)\left(2x-5\right)}+\frac{x+3}{5-x}\)
\(=\frac{5}{x-5}-\frac{x+3}{x-5}\)
\(=\frac{5-x-3}{x-5}\)
\(=\frac{-x+2}{x-5}\)
\(=-\frac{x-2}{x-5}\)
\(\Rightarrow\frac{2x}{4}-\frac{3}{5}=\frac{x}{4}\)
\(\Rightarrow\frac{2x}{4}-\frac{x}{4}=\frac{3}{5}\)
\(\Rightarrow\frac{x}{4}=\frac{3}{5}\)
=> 5x = 12
=> x= 12/5
\(a.ĐKXĐ:\hept{\begin{cases}1-3x\ne0\\3x+1\ne0\\x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{3}\\...\\x\ge0\end{cases}}}\)
\(b,M=\left(\frac{3x}{1-3x}+\frac{2x}{3x+1}\right):\frac{6x^2+10}{1-6x+9x^2}\)
\(=\left(\frac{3x\left(1+3x\right)}{\left(1-3x\right)\left(1+3x\right)}+\frac{2x\left(1-3x\right)}{\left(1-3x\right)\left(1+3x\right)}\right).\frac{\left(1-3x\right)^2}{6x^2+10}\)
\(=\left(\frac{3x+9x^2+2x-6x^2}{\left(1-3x\right)\left(1+3x\right)}\right).\frac{\left(1-3x\right)^2}{6x^2+10}\)
\(=\frac{5x+3x^2}{1+3x}.\frac{1-3x}{2\left(3x^2+5\right)}\)
==>Sai đề không mem
\(\frac{2}{5}\)x m + 25% x m + m = 16,5
m x ( \(\frac{2}{5}\) + 25% + 1 ) = 16,5
m x \(\frac{33}{20}\)= 16,5
m = 16,5 : \(\frac{33}{20}\)
m = 10
\(\frac{24}{400}+50\%+\frac{3}{100}+25\%\)
\(=0,24\%+50\%+0,03\%+25\%\)
\(=50,52\%\)