K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2023

ĐKXĐ: x>=4

\(A=\dfrac{1}{x-4\sqrt{x-4}+3}\)

\(=\dfrac{1}{x-4-4\sqrt{x-4}+4+3}\)

\(=\dfrac{1}{\left(\sqrt{x-4}-2\right)^2+3}\)

\(\left(\sqrt{x-4}-2\right)^2+3>=3\)

=>\(A=\dfrac{1}{\left(\sqrt{x-4}-2\right)^2+3}< =\dfrac{1}{3}\)

Dấu = xảy ra khi \(\sqrt{x-4}-2=0\)

=>x-4=4

=>x=8

12 tháng 8 2021

1 quy đồng lên ra được

\(A=\dfrac{1}{x-2\sqrt{x-5}+3}\le\dfrac{1}{5-2.0+3}=\dfrac{1}{8}\)

dấu"=" xảy ra<=>x=5

12 tháng 8 2021

ở câu 1 mình làm cách quy đồng rồi nhưng nó ko ra, bạn có cách khác ko?

 

21 tháng 10 2019

ĐK: x>=5

Ta có: 

\(x-2\sqrt{x-5}+3=x-5-2\sqrt{x-5}+1-1+5+3=\left(\sqrt{x-5}-1\right)^2+7\ge7\)

=> \(A=\frac{1}{x-2\sqrt{x-5}+3}\le\frac{1}{7}\)

Dấu "=" xảy ra <=> \(\left(\sqrt{x-5}-1\right)^2=0\Leftrightarrow\sqrt{x-5}-1=0\Leftrightarrow\sqrt{x-5}=1\Leftrightarrow x-5=1\Leftrightarrow x=6\left(tm\right)\)

Vậy Giá trị lớn nhất của A = 1/7 , đạt tại x =6.

27 tháng 5 2017

Ôn tập Căn bậc hai. Căn bậc ba

31 tháng 7 2016

\(A=\sqrt{x^2+2x+1}+\sqrt{x^2-2x+1}\)

   \(=\sqrt{\left(x+1\right)^2}+\sqrt{\left(x-1\right)^2}\)

 -Nêú \(x\ge1\)thì \(\sqrt{\left(x+1\right)^2}=x+1\)\(\sqrt{\left(x-1\right)^2}=x-1\)

Ta có:\(A=x+1+x-1=2x\ge2\)

Dấu "=" xảy ra khi x=1

-Nếu\(1>x\ge-1\)thì \(\sqrt{\left(x+1\right)^2}=x+1\)\(\sqrt{\left(x-1\right)^2}=1-x\)

Ta có:\(A=x+1+1-x=2\)

-Nếu x<-1 thì \(\sqrt{\left(x+1\right)^2}=-x-1\)\(\sqrt{\left(x-1\right)^2}=1-x\)

Ta có:\(A=-x-1+1-x=-2x\ge2\)

Dấu "=" xảy ra khi x=-1

Vậy GTNN của A là 2 tại x=1 hoặc x=-1

22 tháng 6 2021

a) đk x khác 0;2

P =  \(\dfrac{1}{x\left(x-2\right)}.\left(\dfrac{x^2+4}{x}-4\right)+1\)

\(\dfrac{1}{x\left(x-2\right)}.\dfrac{x^2-4x+4}{x}+1\)

\(\dfrac{1}{x\left(x-2\right)}.\dfrac{\left(x-2\right)^2}{x}+1\)

\(\dfrac{x-2}{x^2}+1\)

\(\dfrac{x^2+x-2}{x^2}\)

b) Để \(\left|2+x\right|=1\)

<=> \(\left[{}\begin{matrix}2+x=1< =>x=-1\left(tm\right)\\2+x=-1< =>x=-3\left(tm\right)\end{matrix}\right.\)

TH1: x = -1

Thay x = -1 vào P, ta có:

\(P=\dfrac{\left(-1\right)^2-1-2}{\left(-1\right)^2}=-2\)

TH2: x = -3

Thay x = -3 vào P, ta có:

\(P=\dfrac{\left(-3\right)^2-3-2}{\left(-3\right)^2}=\dfrac{4}{9}\)

c) P = \(1+\dfrac{x-2}{x^2}\)

Xét \(\dfrac{x^2}{x-2}=\dfrac{\left(x-2\right)^2+4\left(x-2\right)+4}{x-2}\)

\(\left(x-2\right)+\dfrac{4}{x-2}+4\)

Áp dụng bdt co-si, ta có:

\(\left(x-2\right)+\dfrac{4}{x-2}\ge2\sqrt{\left(x-2\right)\dfrac{4}{x-2}}=4\)

<=> \(\dfrac{x^2}{x-2}\ge4+4=8\)

<=> \(\dfrac{x-2}{x^2}\le\dfrac{1}{8}\)

<=> A \(\le\dfrac{9}{8}\)

Dấu "=" <=> x = 4

17 tháng 5 2021

1. \(x=\frac{1}{9}\) thỏa mãn đk: \(x\ge0;x\ne9\)

Thay \(x=\frac{1}{9}\) vào A ta có:

\(A=\frac{\sqrt{\frac{1}{9}}+1}{\sqrt{\frac{1}{9}}-3}=-\frac{1}{2}\)

2. \(B=...\)

    \(B=\frac{3\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{4x+6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

    \(B=\frac{3x-9\sqrt{x}+x+3\sqrt{x}-4x-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

     \(B=\frac{-6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

3. \(P=A:B=\frac{\sqrt{x}+1}{\sqrt{x}-3}:\frac{-6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(P=\frac{\sqrt{x}+3}{-6}\)

Vì \(\sqrt{x}+3\ge3\forall x\)\(\Rightarrow\frac{\sqrt{x}+3}{-6}\le\frac{3}{-6}=-\frac{1}{2}\)

hay \(P\le-\frac{1}{2}\)

Dấu "=" xảy ra <=> x=0

17 tháng 5 2021

toán lớp 9 khó zậy em đọc k hỉu 1 phân số

19 tháng 10 2021

a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)

Ta có: \(P=\dfrac{\sqrt{x}}{\sqrt{x}+2}+\dfrac{2}{\sqrt{x}-2}-\dfrac{4\sqrt{x}}{x-4}\)

\(=\dfrac{x-2\sqrt{x}+2\sqrt{x}+4-4\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{\sqrt{x}-2}{\sqrt{x}+2}\)