Tìm tất cả các giá trị thực của tham số m để phương trình \(x^3-3x+2-2m=0\) có ba nghiệm thực phân biệt.
A.0<m<4
B.0<m<2
C.0≤m≤4
D.0≤m≤2
Có bạn hay thầy cô nào biết giải thì giải dùm mình luôn ạ.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Xét y = x 3 − 3 x
Ta có: y’= 3 x 2 − 3
y’= 0 ó x = -1 hoặc x = 1
Ta có bảng biến thiên
Vậy đường thẳng y = -2m cắt đồ thị hàm số y = x 3 − 3 x tại 3 điểm phân biệt
ó -2<-2m<2 ó m ∈ ( − 1 ; 1 )
Đáp án C
P T ⇔ − x 3 + 3 x = 4 m − 6.
Suy ra PT là PT hoành độ giao điểm của đường thẳng y = 4 m − 6 và đồ thị hàm số y = − x 3 + 3 x .
PT có 3 nghiệm phân biệt <=> đồ thị có 3giao điểm.
Ta có đồ thị hàm số y = − x 3 + 3 x như hình bên. 2 đồ thị có 3 giao điểm
⇔ − 2 > 4 m − 6 < 2 ⇔ 1 < m < 2.
Đáp án C
Phương pháp:
Đặt 2 x = t t > 0 , đưa về phương trình bậc 2 ẩn t, tìm điều kiện của phương trình bậc 2 ẩn t để phương trình ban đầu có 2 nghiệm phân biệt.
Cách giải: Đặt 2 x = t t > 0 khi đó phương trình trở thành t 2 − 2 m t + m + 2 = 0 *
Để phương trình ban đầu có 2 nghiệm phân biệt thì phương trình (*) có 2 nghiệm dương phân biệt.
Khi đó: Δ ' > 0 S > 0 P > 0 ⇔ m 2 − m − 2 > 0 2 m > 0 m + 2 > 0 ⇔ m > 2 m < − 1 m > 0 m > − 2 ⇒ m > 2
Chú ý và sai lầm: Rất nhiều học sinh sau khi đặt ẩn phụ thì quên mất điều kiện t > 0, dẫn đến việc chỉ đi tìm điều kiện đề phương trình (*) có 2 nghiệm phân biệt.
Phương trình có hai nghiệm phân biệt ⇔ ∆ ' > 0
⇔ m 2 - 7 m + 16 > 0 ⇔ m − 7 2 2 + 15 4 > 0 , ∀ m ∈ R
Theo định lí Viet, ta có:
x 1 . x 2 = 3 m − 5 3 ; x 1 + x 2 = 2 ( m + 1 ) 3 x 1 = 3 x 2 ⇔ x 1 = m + 1 2 , x 2 = m + 1 6 x 1 . x 2 = 3 m − 5 3
⇒ m + 1 2 12 = 3 m − 5 3 ⇔ m 2 − 10 m + 21 = 0 ⇔ m = 3 m = 7
Đáp án cần chọn là: C
\(x^3-3x+2-2m=0\)
=>\(2m=x^3-3x+2\)
Chúng ta sẽ vẽ đồ thị \(y=x^3-3x+2\)
Trên đồ thị, chúng ta sẽ thấy khi \(y\in\left(0;4\right)\) thì \(y=x^3-3x+2\) sẽ cho 3 nghiệm phân biệt
=>\(2m\in\left(0;4\right)\)
=>\(m\in\left(0;2\right)\)
=>Chọn B