Cho hàm số bậc nhất y=(m-2) X+3 tìm giá trị của m để hàm số
A , Đồng biến
B, Nghịch biến
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Hàm số đồng biến trên R\(\Rightarrow a>0\Rightarrow m-2>0\Rightarrow m>2\)
b) Hàm số nghịch biến trên R
\(\Leftrightarrow a< 0\Rightarrow m-2< 0\Rightarrow m< 2\)
\(a,\) Hàm số đồng biến \(\Leftrightarrow a>0\Leftrightarrow\dfrac{m+1}{2m-3}>0\left(dk:m\ne\dfrac{3}{2}\right)\Leftrightarrow m+1>0\Leftrightarrow m>-1\)
\(\Leftrightarrow\left[{}\begin{matrix}m>-1\\m\ne\dfrac{3}{2}\end{matrix}\right.\)
\(b,\) Hàm số nghịch biến \(\Leftrightarrow a< 0\Leftrightarrow\dfrac{m+1}{2m-3}< 0\left(dk:m\ne\dfrac{3}{2}\right)\Leftrightarrow m+1< 0\Leftrightarrow m< -1\)
Bài 1:
Để hàm số y=(2-m)x-2 là hàm số bậc nhất thì 2-m<>0
=>m<>2
a=2-m
b=-2
Bài 2:
a: Để hàm số y=(m-5)x+1 đồng biến trên R thì m-5>0
=>m>5
b: Để hàm số y=(m-5)x+1 nghịch biến trên R thì m-5<0
=>m<5
Bài 3:
a: Để (d1)//(d2) thì \(\left\{{}\begin{matrix}3-m=2\\2\ne m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=1\\m\ne2\end{matrix}\right.\Leftrightarrow m=1\)
b: Để (d1) cắt (d2) thì \(3-m\ne2\)
=>\(m\ne1\)
c: Để (d1) cắt (d2) tại một điểm trên trục tung thì
\(\left\{{}\begin{matrix}3-m\ne2\\m=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\ne1\\m=2\end{matrix}\right.\)
=>m=2
a: Để hàm số đồng biến thì m-3>0
=>m>3
Để hàm số nghịch biến thì m-3<0
=>m<3
b: Thay x=3 và \(y=\sqrt{3}\) vào (d), ta được:
\(3\left(m-3\right)+\sqrt{2}=\sqrt{3}\)
=>\(3\left(m-3\right)=\sqrt{3}-\sqrt{2}\)
=>\(m-3=\dfrac{\sqrt{3}-\sqrt{2}}{3}\)
=>\(m=\dfrac{\sqrt{3}-\sqrt{2}+9}{3}\)
a. Hàm đồng biến khi:
\(m+3>0\Rightarrow m>-3\)
b. Hàm nghịch biến khi:
\(m+3< 0\Rightarrow m< -3\)
tròi oi a viết chữ xấu wá đi à, đọc bài của a mà đau mắt wá
\(Ta.có:y=ax+b\)
HSĐB khi a>0 ; HSNB khi a<0
Từ đây em giải các a ra thôi nè!
a: Để hàm số đồng biến thì 2m-10>0
=>2m>10
=>m>5
b: Để hàm số đồng biến thì 2-5m>0
=>5m<2
=>m<2/5
c: Để hàm số nghịch biến thì 3-7m<0
=>7m>3
=>m>3/7
d:
\(y=m\left(3-2x\right)+x-2\)
\(=3m-2mx+x-2\)
\(=x\left(-2m+1\right)+3m-2\)
Để hàm số nghịch biến thì -2m+1<0
=>-2m<-1
=>m>1/2
e: Để đây là hàm số bậc nhất thì \(\left\{{}\begin{matrix}m>=0\\3-\sqrt{m}\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>=0\\m\ne9\end{matrix}\right.\)
f: Để đây là hàm số bậc nhất thì
\(\left\{{}\begin{matrix}m-2>=0\\\sqrt{m-2}-1< >0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>=2\\\sqrt{m-2}< >1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m>=2\\m-2< >1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>=2\\m< >3\end{matrix}\right.\)
g: Để hàm số đồng biến thì \(m^2+6m+9>0\)
=>\(\left(m+3\right)^2>0\)
=>m+3<>0
=>m<>-3
h: Để đây là hàm số bậc nhất thì \(\dfrac{m-1}{m-4}\ne0\)
=>\(m\notin\left\{1;4\right\}\)
(Lưu ý:
Hàm số y = ax + b đồng biến khi a > 0 và nghịch biến khi a < 0.)
a) y = (m – 2)x + 3 đồng biến khi m – 2 > 0 ⇔ m > 2
Vậy với m > 2 thì hàm số đồng biến.
b) y = (m – 2)x + 3 nghịch biến khi m – 2 < 0 ⇔ m < 2
Vậy với m < 2 thì hàm số nghịch biến.
a: Để hàm số đồng biến thì m-2>0
=>m>2
b: Để hàm số nghịch biến thì m-2<0
=>m<2