K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2023

\(2x^2+y^2-2xy-8x+16=0\)

\(\Leftrightarrow\left(x^2-8x+16\right)+\left(x^2-2xy+y^2\right)=0\)

\(\Leftrightarrow\left(x-4\right)^2+\left(x-y\right)^2=0\)

Do: \(\left\{{}\begin{matrix}\left(x-4\right)^2\ge0\\\left(x-y\right)^2\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left(x-4\right)^2+\left(x-y\right)^2\ge0\)

Mặt khác: \(\left(x-4\right)^2+\left(x-y\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-4=0\\x-y=0\end{matrix}\right.\)

\(\Leftrightarrow x=y=4\)

Vậy: ... 

24 tháng 10 2023

bn giải giúp bài của mình ik ạ,c.ơn 

 

26 tháng 10 2023

\(5x^2+2xy+y^2-16x+16=0\)

=>\(x^2+2xy+y^2+4x^2-16x+16=0\)

=>\(\left(x+y\right)^2+\left(2x-4\right)^2=0\)

=>\(\left\{{}\begin{matrix}x+y=0\\2x-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)

29 tháng 10 2019

NV
12 tháng 9 2021

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+4\left(x+y\right)+4+\left(x^2-12x+36\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2+4\left(x+y\right)+4+\left(x-6\right)^2=0\)

\(\Leftrightarrow\left(x+y+2\right)^2+\left(x-6\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-6=0\\x+y+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=-8\end{matrix}\right.\)

12 tháng 9 2021

\(y^2+2xy-12x+4\left(x+y\right)+2x^2+40=0\\ \Leftrightarrow\left[\left(x^2+2xy+y^2\right)+4\left(x+y\right)+4\right]+\left(x^2-12x+36\right)=0\\ \Leftrightarrow\left(x+y+2\right)^2+\left(x-6\right)^2=0\)

Vì \(\left\{{}\begin{matrix}\left(x+y+2\right)^2\ge0\forall x,y\\\left(x-6\right)^2\ge0\forall x\end{matrix}\right.\) 

Nên \(\left(x+y+2\right)^2+\left(x-6\right)^2\ge0\forall x,y\)

Dấu"=" xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}x+y+2=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-8\\x=6\end{matrix}\right.\)

Vậy x = 6 và y = -8

 

 

 

18 tháng 4 2021

Áp dụng BĐT cói cho 2 số ko âm ta có 

X^2+y^2 >= 2 .căn x^2 .y^2 = 2.xy= 2.6 =12 

Vậy P min =12 dấu = xảy ra khi x^2=y^2 <=> x=y 

( thông cảm mình gõ mũ ko đc ) 

NV
2 tháng 9 2021

\(P-\dfrac{5}{2}=x+2y-\dfrac{x^2+y^2}{2}=-\dfrac{1}{2}\left(x-1\right)^2-\dfrac{1}{2}\left(y-2\right)^2+\dfrac{5}{2}\le\dfrac{5}{2}\)

\(\Rightarrow P-\dfrac{5}{2}\le\dfrac{5}{2}\Rightarrow P\le5\)

\(P_{max}=5\) khi \(\left(x;y\right)=\left(1;2\right)\)

3 tháng 9 2021

Cảm ơn nhiều ạ !