Bài 1 : Ba số 5x - y ; 2x + 1 và x - y theo thứ tự lập thành Cấp số cộng . Ba số 3;căn(2x + y) và x + 1 theo thứ tự lập thành Cấp số nhân . Tìm x,y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
xét tích :
-3x4y . 5x2y3 = -15x6y4
vì x6 \(\ge\)0 ; y4 \(\ge\)0 nên -15x6y4 \(\le\)0
Vậy hai đơn thức này không thể cùng dương
xét tích :
\(\frac{-1}{4}x^3y^4.\frac{-4}{5}x^4y^3.\frac{1}{2}xy\)
\(=\frac{1}{10}x^8y^8\)\(\ge\)0
Vậy ba đơn thức không thể cùng có giá trị âm
Do các đường thẳng đôi một cắt nhau tại các điểm A, B, C nên các điểm cách đều các cạnh gồm tâm đường tròn nội tiếp và ba tâm đường tròn bàng tiếp.
Vậy có tất cả 4 điểm M cách đều ba đường thẳng đã cho.
đáp án D
\(f\left(x\right)=2x^2+5x-3\)
f(1)=2+5-3=4
f(0)=-3
f(1,5)=2x2,25+5x1,5-3=9
\(a,f\left(-1\right)=\left(-5\right)\left(-1\right)-3=5-3=2\\ f\left(\dfrac{2}{3}\right)=-5.\dfrac{2}{3}-3=\dfrac{-10}{3}-3=-\dfrac{19}{3}\)
\(b,y=-8\Rightarrow-8=-5x-3\Rightarrow-5=-5x\Rightarrow x=1\\ y=6\Rightarrow6=-5x-3\Rightarrow9=-5x\Rightarrow x=-\dfrac{9}{5}\)
a: f(-1)=5-3=2
f(2/3)=-10/3-3=-19/3
b: y=-8
=>-5x-3=-8
=>-5x=-5
hay x=1
y=6
=>-5x-3=6
=>-5x=9
hay x=-9/5
* Trước hết tìm giao điểm của hai đường thẳng ( d 1 ) và ( d 2 ).
- Tìm hoành độ của giao điểm:
2/5x + 1/2 = 3/5x - 5/2 ⇔ 1/5x = 6/2 ⇔ x = 15.
- Tìm tung độ giao điểm:
y = 2/5.15 + 1/2 = 6,5.
*Tìm k (bằng cách thay tọa độ của giao điểm vào phương trình ( d 3 ).
6,5 = k.15 + 3,5 ⇔ 15k = 3 ⇔ k = 0,2.
Trả lời: Khi k = 0,2 thì ba đường thẳng đồng quy tại điểm (15; 6,5).
Bài 4.
\(\left|x-1\right|+\left|y-2\right|+\left(z-x\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y-2=0\\z-x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=z=1\\y=2\end{cases}}\)
Bài 3.
\(\left|x-1\right|+\left|2x-2\right|+\left|4x-4\right|+\left|5x-5\right|=36\)
\(\Leftrightarrow\left|x-1\right|+2\left|x-1\right|+4\left|x-1\right|+5\left|x-1\right|=36\)
\(\Leftrightarrow12\left|x-1\right|=36\)
\(\Leftrightarrow\left|x-1\right|=3\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=3\\x-1=-3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=-2\end{cases}}\)
bấm vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm bạn ạ
Bài 2: Tính giá trị của biểu thức sau:
\(16x^2-y^2=\left(4x+y\right)\left(4x-y\right)\)
Thay \(\hept{\begin{cases}x=87\\y=13\end{cases}}\)
\(\Rightarrow\left(4.87+13\right)\left(4.87-13\right)=361.335=120935\)
Bài 4: Tìm x
a) \(9x^2+x=0\)
\(\Rightarrow x\left(9x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\9x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{-1}{9}\end{cases}}\)
b) \(27x^3+x=0\)
\(\Rightarrow x\left(27x^2+1=0\right)\)
\(\Rightarrow\orbr{\begin{cases}x=0\\27x^2+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\27x^2=\left(-1\right)\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x^2=\frac{-1}{27}\end{cases}}\)
Ta có: \(\frac{-1}{27}\) loại vì \(x^2\ge0\forall x\)
Vậy \(x=0\)
5x-y;2x+1;x-y lập thành cấp số cộng nên
5x-y+x-y=2(2x+1)
=>6x-2y=4x+2
=>2x-2y=2
=>x-y=1
=>y=x-1
\(3;\sqrt{2x+y};x+1\) lập thành cấp số nhân thì \(\left(\sqrt{2x+y}\right)^2=3\left(x+1\right)\)
=>\(2x+y=3x+3\) hoặc -2x-y=3x+3
=>2x+x-1=3x+3 hoặc -2x-x+1=3x+3
=>-1=3(loại) hoặc -3x+1=3x+3
=>-6x=2
=>x=-1/3
=>y=-1/3-1=-4/3
Thử lại, ta sẽ thấy: 2x+y=-2/3-4/3=-6/3=-2<0
=>\(\sqrt{2x+y}\) không có giá trị
Vậy: Không có cặp số (x,y) nào thỏa mãn đề bài