Tìm nghiệm nguyên dương của pt:x^2 +y^2 -8=x+y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+\left(x+1\right)^2=y^4+\left(y+1\right)^4\)
\(\Leftrightarrow x^2-y^4=\left(y+1\right)^4-\left(x+1\right)^2\)
\(\Leftrightarrow x^2-\left(y^2\right)^2=\left(\left(y+1\right)^2\right)^2-\left(x+1\right)^2\)
\(\Leftrightarrow\left(x-y^2\right)\left(x+y^2\right)=\left(\left(y+1\right)^2+x+1\right)\left(\left(y+1\right)^2-x-1\right)\)
\(\Leftrightarrow\left(x-y^2\right)\left(x+y^2\right)=\left(y^2+2y+1+x+1\right)\left(y^2+2y+1-x-1\right)\)
\(\Leftrightarrow\left(x-y^2\right)\left(x+y^2\right)=\left(y^2+2y+x+2\right)\left(y^2+2y-x\right)\)
\(\Leftrightarrow\frac{\left(x-y^2\right)}{\left(y^2+2y-x\right)}=\frac{\left(y^2+2y+x+2\right)}{\left(x+y^2\right)}\)
Đến đây dễ dàng tính rồi nhé -_<
Ta có \(2^x+\left(x^2+1\right)\left(y-2\right)\left(y-4\right)=0\)
Mà \(2^x>0,x^2+1>0\)
=> \(\left(y-2\right)\left(y-4\right)< 0\)
=> \(2< y< 4\)
=> \(y=3\)
Thay y=3 vào đề bài ta có:
\(2^x-\left(x^2+1\right)=0\)
=> \(2^x=x^2+1\)
Mà \(2^x\)chẵn với \(x>0\)
=> \(x\)lẻ
Đặt \(x=2k+1\)(k không âm)
Khi đó \(2^{2k+1}=\left(2k+1\right)^2+1\)
=> \(2.2^{2k}=4k^2+4k+2\)
=> \(2^{2k}=2k^2+2k+1\)
+ k=0 => \(2^0=1\)thỏa mãn
=> \(x=1\)
+ \(k>0\)=> \(2^k\)chẵn
Mà \(2k^2+2k+1\)lẻ với mọi k
=> không giá trị nào của k thỏa mãn
Vậy x=1,y=3