K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2019

x\(=\)y\(=\)0      va   băng âm một 

21 tháng 5 2019

\(x^2+\left(x+1\right)^2=y^4+\left(y+1\right)^4\)

\(\Leftrightarrow x^2-y^4=\left(y+1\right)^4-\left(x+1\right)^2\)

\(\Leftrightarrow x^2-\left(y^2\right)^2=\left(\left(y+1\right)^2\right)^2-\left(x+1\right)^2\)

\(\Leftrightarrow\left(x-y^2\right)\left(x+y^2\right)=\left(\left(y+1\right)^2+x+1\right)\left(\left(y+1\right)^2-x-1\right)\)

\(\Leftrightarrow\left(x-y^2\right)\left(x+y^2\right)=\left(y^2+2y+1+x+1\right)\left(y^2+2y+1-x-1\right)\)

\(\Leftrightarrow\left(x-y^2\right)\left(x+y^2\right)=\left(y^2+2y+x+2\right)\left(y^2+2y-x\right)\)

\(\Leftrightarrow\frac{\left(x-y^2\right)}{\left(y^2+2y-x\right)}=\frac{\left(y^2+2y+x+2\right)}{\left(x+y^2\right)}\)

Đến đây dễ dàng tính rồi nhé -_<

20 tháng 6 2019

Ta có \(2^x+\left(x^2+1\right)\left(y-2\right)\left(y-4\right)=0\)

Mà \(2^x>0,x^2+1>0\)

=> \(\left(y-2\right)\left(y-4\right)< 0\)

=> \(2< y< 4\)

=> \(y=3\)

Thay y=3 vào đề bài ta có:

\(2^x-\left(x^2+1\right)=0\)

=> \(2^x=x^2+1\)

Mà \(2^x\)chẵn với \(x>0\)

=> \(x\)lẻ

Đặt \(x=2k+1\)(k không âm)

Khi đó \(2^{2k+1}=\left(2k+1\right)^2+1\)

=> \(2.2^{2k}=4k^2+4k+2\)

=> \(2^{2k}=2k^2+2k+1\)

+ k=0 => \(2^0=1\)thỏa mãn 

=> \(x=1\)

\(k>0\)=> \(2^k\)chẵn 

Mà \(2k^2+2k+1\)lẻ với mọi k

=> không giá trị nào của k thỏa mãn

Vậy x=1,y=3

29 tháng 8 2021

ai giúp em bài1 và phần b bài 2 với ạ