Cho hình thang ABCD (có AB và CD là hai đáy). M và N lần lượt là trung điểm của hai đường chéo BD và AC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:Xét hình thang ABCD có
M là trung điểm của AD
MN//AB//CD
Do đó: N là trung điểm của BC
Xét ΔDAB có
M là trung điểm của AD
ME//AB
Do đó: E là trung điểm của BD
Xét ΔABC có
N là trung điểm của BC
NF//AB
Do đó: F là trung điểm của AC
a: Xét hình thang ABCD có
M là trung điểm của AD
MN//AB//CD
Do đó: N là trung điểm của BC
Xét ΔADC có
M là trung điểm của AD
MF//DC
Do đó: F là trung điểm của AC
Xét ΔBDC có
N là trung điểm của BC
NE//DC
Do đó: E là trung điểm của BD
GT : ABCD là hình thang ( AB< CD)
MA = MD
MN//AB//DC
KL: CM: N,E,F lần lượt là trung điểm của BC, BD,AC
Giải:
Xét hình thang ABCD có :
MA=MD ( gt)
MN//AB//DC ( gt)
=> MN là đường trung bình của hình thang ABCD
=> NB=NC
=> N là trung điểm của BC
Xét tam giác ABD có :
MA=MD ( gt)
MN//AB (gt) hay ME//AB(vì ME thuộc MN)
=> ME là đường trung bình của tam giác ABD
=> EB=ED
=> E là trung điểm của BD
Xét tam giác ABC có:
NB= NC ( cmt)
MN//AB ( gt ) hay FN//AB ( vì FN thuộc MN )
=> NF là đường trung bình của tam giác ABC
=> NB=NC
=> N là trung điểm của BC
Vì ABCD là hình thang cân có AB // CD nên:
AC = BD (1)
Xét ΔADC và ΔBCD, ta có:
AC = BD (chứng minh trên)
AD = BC (ABCD cân)
CD cạnh chung
Suy ra: △ ADC = △ BCD (c.c.c)
Suy ra : ∠ (ACD) = ∠ ( BDC)
Hay ∠ (OCD) = ∠ ( ODC)
Suy ra tam giác OCD cân tại O
Suy ra: OD = OC (tính chất tam giác cân) (2)
Từ (1) và (2) suy ra: OA = OB
Ta có:
Mà OA = OB ⇒ OM = ON
Lại có: MD = 3MO (gt) ⇒ NC = 3NO
Trong ΔOCD, ta có:
Suy ra: MN // CD (Định lí đảo của định lí Ta-lét)
Ta có: OD = OM + MD = OM + 3OM = 4OM
Trong ΔOCD, ta có: MN // CD
Suy ra: Hệ quả định lí Ta-lét)
Suy ra:
Suy ra: MN = 1/4 CD = 1/4 .5,6 = 1,4 (cm)
Ta có: MB = MD (gt)
Suy ra: MB = 3OM hay OB = 2OM
Lại có: AB // CD (gt) suy ra: MN // AB
Ta có: MN // AB, áp dụng hệ quả định lý Ta – let ta được:
(Hệ quả định lí Ta-lét)
Suy ra:
Vậy: AB = 2MN = 2.1,4 = 2,8(cm)