K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2017

a) Xét Tam giác ABC ta có : 

BC^2 = 5^2 = 25 

AB^2 + AC^2 = 3^2 + 4^2 = 9 + 16 = 25 

=> bc^2 = AB^2 + AC^2 

=> Tam giác Abc vuông tại A ( Định lý pytago đảo ) 

28 tháng 4 2018

a) Xét tam giác ABC : AB2+AC2= 32+42=9+16=25(cm) và BC2= 52= 25 => AB2+AC2=BC2(=25)  =>tam giác ABC vuông tại A (định lí pi-ta-go đảo)

+) Xét tam giác AHB và tam giác CHA:

góc AHB = góc CHA(=900)

góc BAH = góc ACH ( cùng phụ với  góc HAC)

=> tam giác AHB ~ tam giác CHA ( g-g)

+) Xét tam giác HCA và tam giác ACB:

góc AHC = góc BAC(=900)

góc ACB chung

=> tam giác HCA ~ tam giác ACB (g-g)

b)  Có: tam giác HCA ~ tam giác ACB(phần a) => AH/AB = AC/BC => AH/3 = 4/5 => AH= 4/5x3 = 2,4 (cm)

Áp dụng định lí Pi-ta-go trong tam giác AHB vuông tại H :

AH2+BH2 = AB<=> 2,42+ BH2 = 32 <=> 5,76+BH2 = 9 <=> BH= 9-5,76 <=> BH2 = 3,24 <=>. BH= căn 3,24 <=> BH =1,8 (cm)

Có: tam giác AHB ~ tam giác CHA( phần a) => AH/HC = BH/AH <=> AH2 = BHxHC <=> 2,42 = 1,8+HC <=> HC= 5,76-1,8 <=> HC=3,96 (cm)

 Vậy AH=2,4cm; BH=1,8cm; HC=3,96cm

CÒN CÂU C THÌ MIK KO BIẾT.  :P

22 tháng 3 2023

Có hình vẽ ko ạ

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

AH=3*4/5=2,4cm

 

9 tháng 5 2023

a. Xét ΔHBA và ΔABC có:

       \(\widehat{H}=\widehat{A}\) = 900 (gt)

        \(\widehat{B}\) chung

\(\Rightarrow\)  ΔHBA \(\sim\) ΔABC (g.g)

b. Vì  ΔABC vuông tại A

Theo đ/lí Py - ta - go ta có:

  BC2 = AB2 + AC2

  BC2 = 32 + 42

\(\Rightarrow\) BC2 = 25 cm

\(\Rightarrow\) BC = \(\sqrt{25}=5\) cm

Ta lại có:  ΔHBA \(\sim\) ΔABC

   \(\dfrac{AH}{CA}=\dfrac{BA}{BC}\) 

\(\Leftrightarrow\dfrac{AH}{4}=\dfrac{3}{5}\) 

\(\Rightarrow\) AH = 2,4 cm

24 tháng 4 2016

A B C H D F

24 tháng 3 2022
Các bn làm ơn giải hộ mik câu a,b mik đang cần gấp

a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

\(\widehat{B}\) chung

Do đó: ΔHBA\(\sim\)ΔABC(g-g)

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow BC^2=3^2+4^2=25\)

hay BC=5(cm)

Ta có: ΔHBA\(\sim\)ΔABC(cmt)

nên \(\dfrac{BH}{BA}=\dfrac{BA}{BC}=\dfrac{AH}{CA}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{BH}{3}=\dfrac{3}{5}=\dfrac{AH}{4}\)

Suy ra: BH=1,8cm; AH=2,4cm

22 tháng 8 2023

Bạn tự vẽ hình.

(a) \(BC^2=AB^2+AC^2\left(Pythagoras\right)\)

\(\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)

+) \(sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\Rightarrow\hat{B}\approx53^o\)

+) \(\hat{C}=90^o-\hat{B}\approx90^o-53^o=37^o\)

(b) +) \(AB.AC=BC.AH\Leftrightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{3\cdot4}{5}=2,4\left(cm\right)\)

\(\hat{A}=\hat{E}=\hat{F}=90^o\left(gt\right)\Rightarrow AEHF\) là hình chữ nhật.

Do đó, \(EF=AH\left(đpcm\right)\)

22 tháng 8 2023

ok bn

 

2 tháng 5 2022

a. áp dụng định lý pytago vào tam giác vuông ABC, ta có:

BC2=AB2+AC2

BC2= 32+42

BC2= 9+16

BC2=25

BC= 5 (cm)

Vì BD là phân giác 

=> \(\dfrac{AD}{CD}\)=\(\dfrac{AB}{BC}\)

gọi AD là x, CD là 4-x

=> \(\dfrac{x}{4-x}\)=\(\dfrac{3}{5}\)

5x= 3.(4-x)

5x= 12-3x

5x+3x=12

8x=12

x= 1,5 (cm)

Vậy AD= 1,5 cm

b. Xét tam giác ABC và tam giác HBA:

góc A= góc H= 90o

góc B chung

=> tam giác ABC ~ tam giác HBA

c. Vì tam giác ABC ~ tam giác HBA (cmt)

=> \(\dfrac{AB}{HB}\)=\(\dfrac{BC}{AB}\)

=> AB2=BC.HB

24 tháng 6 2017

A B C H E D 3 4

a)

Xét \(\Delta ABC\) và \(\Delta HBA\)có:

\(\widehat{BAC}=\widehat{AHB}\left(=90^ô\right)\)

\(\widehat{ABC}\)là góc chung (giả thiết)

Suy ra \(\Delta ABC\)đồng dạng với \(\Delta HBA\)(g.g)

b)

\(\Delta ABC\)vuông tại A

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)

\(\Delta ABC\)đồng dạng với \(\Delta HBA\)

\(\Rightarrow\frac{AC}{AH}=\frac{BC}{AB}\Leftrightarrow AH=\frac{AB.AC}{BC}=\frac{3.4}{5}=2,4\left(cm\right)\)

c) Ta có

\(\hept{\begin{cases}\text{AH//DE}\\\widehat{AHC}=90^o\end{cases}\Rightarrow\widehat{CDE}=90^o}\)

Xét \(\Delta ABC\)và \(\Delta DEC\)

\(\widehat{BAC}=\widehat{CDE}=90^o\)

\(\widehat{ACB}\)là góc chung (giả thiết)

Suy ra \(\Delta ABC\)đồng dạng với \(\Delta DEC\)(g.g)

\(\Rightarrow\frac{CA}{CB}=\frac{CD}{CE}\Leftrightarrow CE.CA=CD.CB\left(đpcm\right)\)

d)

\(\Delta AHB\)vuông tại H

\(\Rightarrow BH=\sqrt{AB^2-AH^2}=\sqrt{3^2-2,4^2}=1,8\left(cm\right)\)

Ta có;   \(CD=BC-BH-DH=5-1,8-2,4=0,8\left(cm\right)\)

Ta lại có: 

\(\frac{CA}{CB}=\frac{CD}{CE}\)(theo câu c)

\(\Rightarrow EC=\frac{CB.CD}{CA}=\frac{5.0,8}{4}=1\left(cm\right)\)

Ta lại có:

\(AE=AC-EC=4-1=3\left(cm\right)\)

mà \(AB=3cm\)nên \(AB=AE\)hay \(\Delta ABE\)cân tại A

Vậy \(\Delta ABE\)cân tại A

24 tháng 6 2017

Hình vẽ ko được chính xác bạn thông cảm