K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2023

`2(x-3)-4x=0`

`<=> 2x-6-4x=0`

`<=> -2x-6=0`

`<=>-2x=6`

`<=>x=-3`

__

`x^2-2x+1=25`

`<=>(x-1)^2=25`

`<=> (x-1)^2 = (+- 5)^2`

\(\Leftrightarrow\left[{}\begin{matrix}x-1=5\\x-1=-5\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)

22 tháng 10 2023

a: 2(x-3)-4x=0

=>2x-6-4x=0

=>-2x-6=0

=>2x+6=0

=>2x=-6

=>x=-3

b: \(x^2-2x+1=25\)

=>\(\left(x-1\right)^2=25\)

=>\(\left[{}\begin{matrix}x-1=5\\x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)

26 tháng 12 2022

\(B1\\ a,2x+10y=2\left(x+5y\right)\\ b,x^2+4x+4=x^2+2.2x+2^2=\left(x+2\right)^2\\ c,x^2-y^2+10y-25\\ =\left(x^2-y^2\right)+5\left(2y-5\right)\\ =\left(x-y\right)\left(x+y\right)+5\left(2y-5\right)\\ B2\)

\(a,x^2-3x+x-3=0\\ =>x\left(x-3\right)+\left(x-3\right)=0\\ =>\left(x+1\right)\left(x-3\right)=0\\ =>\left[{}\begin{matrix}x+1=0\\x-3=0\end{matrix}\right.=>\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\\ b,2x\left(x-3\right)-\dfrac{1}{2}\left(4x^2-3\right)=0\\ =>2x^2-6x-2x^2+\dfrac{3}{2}=0\\ =>-6x=-\dfrac{3}{2}\\ =>x=\left(-\dfrac{3}{2}\right):\left(-6\right)\\ =>x=\dfrac{1}{4}\\ c,x^2-\left(x-3\right)\left(2x-5\right)=9\\ =>x^2-2x^2+6x+5x-15=9\\ =>-x^2+11-15-9=0\\ =>-x^2+11x-24=0\\ =>-x^2+8x+3x-24=0\\ =>-x\left(x-8\right)+3\left(x-8\right)=0\\ =>\left(3-x\right)\left(x-8\right)=0\\ =>\left[{}\begin{matrix}3-x=0\\x-8=0\end{matrix}\right.=>\left[{}\begin{matrix}x=3\\x=8\end{matrix}\right.\)

23 tháng 10 2016

a) \(4x^2-12x=-9\)

\(\Leftrightarrow4x^2-12x+9=0\)

\(\Leftrightarrow\left(2x-3\right)^2=0\)

\(\Leftrightarrow2x-3=0\Leftrightarrow x=\frac{3}{2}\)

b) \(\left(5-2x\right)\left(2x+7\right)=4x^2-25\)

\(\Leftrightarrow\left(5-2x\right)\left(2x+7\right)+\left(25-4x^2\right)=0\)

\(\Leftrightarrow\left(5-2x\right)\left(2x+7\right)+\left(5-2x\right)\left(5+2x\right)=0\)

\(\Leftrightarrow\left(5-2x\right)\left(2x+7+5+2x\right)=0\)

\(\Leftrightarrow\left(5-2x\right)\left(4x+12\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{5}{2}\\x=-3\end{array}\right.\)

c)\(x^3+27+\left(x+3\right)\left(x-9\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\)

\(\Leftrightarrow\left(x+3\right)x\left(x-2\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-3\\x=0\\x=2\end{array}\right.\)

d) \(4\left(2x+7\right)^2-9\left(x+3\right)^2=0\)

\(\Leftrightarrow\left[2\left(2x+7\right)-3\left(x+3\right)\right]\left[2\left(2x+7\right)+3\left(x+3\right)\right]=0\)

\(\Leftrightarrow\left(4x+14-3x-9\right)\left(4x+14+3x+9\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(7x+23\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-5\\x=-\frac{23}{17}\end{array}\right.\)

15 tháng 9 2021

a)\(3x^2-4x=0<=>x(3x-4)=0\)
TH1: x=0

TH2 3x-4=0 <=>x=4/3

KL:.....

b) (x+3)(x−1)+2x(x+3)=0.

<=> (x+3)(x-1+2x)=0

TH1: x+3=0 <=> x=-3

TH2  x-1=0  <=> x=1

KL:.....

c) \(9x^2+6x+1=0. <=>(3x+1)^2=0<=>3x+1=0<=>x=-1/3 ​\)

KL:......
d) \(x^2−4x=4.<=>(x-2)^2=0<=>x-2=0<=>x=2\)

KL:....

15 tháng 9 2021

a) \(3x^2-4x=0\)

\(\Leftrightarrow x\left(3x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{3}\end{matrix}\right.\)

b) \(\left(x+3\right)\left(x-1\right)+2x\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{1}{3}\end{matrix}\right.\)

c) \(9x^2+6x+1=0\)

\(\Leftrightarrow\left(3x+1\right)^2=0\)

\(\Leftrightarrow3x+1=0\Leftrightarrow x=-\dfrac{1}{3}\)

d) \(x^2-4x=4\)

\(\Leftrightarrow\left(x-2\right)^2=8\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=2\sqrt{2}\\x-2=-2\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\sqrt{2}+2\\x=-2\sqrt{2}+2\end{matrix}\right.\)

28 tháng 1 2017

a) \(\left(x+1\right)\left(2x-1\right)\left(-x+2\right)=0\)

\(\Leftrightarrow\left[\begin{matrix}x+1=0\\2x-1=0\\-x+2=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=-1\\x=\frac{1}{2}\\x=2\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là \(S=\left\{-1;\frac{1}{2};2\right\}\)

b) \(\left(2x-1\right)\left(3x+2\right)\left(4x-5\right)\left(x-7\right)=0\)

\(\Leftrightarrow\left[\begin{matrix}2x-1=0\\3x+2=0\\4x-5=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=\frac{1}{2}\\x=-\frac{2}{3}\\x=\frac{5}{4}\\x=7\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là \(S=\left\{\frac{1}{2};-\frac{2}{3};\frac{5}{4};7\right\}\)

c) \(x^2-6x+11=0\)

\(\Leftrightarrow x^2-6x+9+2=0\)

\(\Leftrightarrow\left(x-3\right)^2+2=0\) (vô lí)

Vậy phương trình vô nghiệm

d) \(\left(x^2+2x+3\right)\left(x^2-25\right)\left(x+19\right)=0\)

\(\Leftrightarrow\left(x^2+2x+1+2\right)\left(x+5\right)\left(x-5\right)\left(x+19\right)=0\)

\(\Leftrightarrow\left[\left(x+1\right)^2+2\right]\left(x+5\right)\left(x-5\right)\left(x+19\right)=0\)

\(\Leftrightarrow\left[\begin{matrix}x+5=0\\x-5=0\\x+19=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=-5\\x=5\\x=-19\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là \(S=\left\{\pm5;-19\right\}\)

28 tháng 1 2017

a,b,d dễ mà bạn tự làm

c,x2-6x+11=0<=> x2-6x+9+2=0

<=>(x-3)2=-2(vô lý)

vậy pt vô nghiệm

26 tháng 12 2021

a) \(\Rightarrow\dfrac{1}{3}x\left(x-2\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)

b) \(\Rightarrow\left(x+5\right)\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=-5\\x=1\end{matrix}\right.\)

c) \(\Rightarrow x\left(x^2-\dfrac{1}{9}\right)=0\Rightarrow x\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{1}{3}\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)

e) \(\Rightarrow\left(x+2\right)\left(x+2-x+2\right)=0\Rightarrow\left(x+2\right).4=0\Rightarrow x=-2\)

f) \(\Rightarrow x\left(2x-3\right)+2\left(2x-3\right)=0\Rightarrow\left(2x-3\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-2\end{matrix}\right.\)

g) \(\Rightarrow2\left(3x-2\right)^2-\left(3x-2\right)\left(3x+2\right)=0\Rightarrow\left(3x-2\right)\left(3x-6\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=2\end{matrix}\right.\)

h) \(\Rightarrow x\left(x+1\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=-2\end{matrix}\right.\)

i) \(\Rightarrow4x\left(x+1\right)+5\left(x+1\right)=0\Rightarrow\left(x+1\right)\left(4x+5\right)=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{5}{4}\end{matrix}\right.\)

a) Ta có: \(\left(x^2-16\right)\left(\dfrac{x}{4}-\dfrac{4x+5}{3}\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x+4\right)\left(\dfrac{3x-16x-20}{12}\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x+4\right)\cdot\left(-13x-20\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x+4=0\\-13x-20=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-4\\-13x=20\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-4\\x=\dfrac{-20}{13}\end{matrix}\right.\)

Vậy: \(x\in\left\{4;-4;\dfrac{-20}{13}\right\}\)

b) Ta có: \(\left(4x-1\right)\left(x+5\right)=x^2-25\)

\(\Leftrightarrow\left(4x-1\right)\left(x+5\right)-\left(x^2-25\right)=0\)

\(\Leftrightarrow\left(4x-1\right)\left(x+5\right)-\left(x+5\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(4x-1-x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(3x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\3x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\3x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-\dfrac{4}{3}\end{matrix}\right.\)

Vậy: \(x\in\left\{-5;\dfrac{-4}{3}\right\}\)

c) Ta có: \(x\left(x+3\right)^3-\dfrac{x}{4}\cdot\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\cdot\left[x\left(x+3\right)^2-\dfrac{1}{4}x\right]=0\)

\(\Leftrightarrow\left(x+3\right)\left[x\left(x^2+6x+9\right)-\dfrac{1}{4}x\right]=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^3+6x^2+9x-\dfrac{1}{4}x\right)=0\)

\(\Leftrightarrow\left(x+3\right)\cdot x\cdot\left(x^2+6x+\dfrac{35}{4}\right)=0\)

\(\Leftrightarrow x\left(x+3\right)\left(x^2+6x+9-\dfrac{1}{4}\right)=0\)

\(\Leftrightarrow x\left(x+3\right)\left[\left(x+3\right)^2-\dfrac{1}{4}\right]=0\)

\(\Leftrightarrow x\left(x+3\right)\left(x+3-\dfrac{1}{2}\right)\left(x+3+\dfrac{1}{2}\right)=0\)

\(\Leftrightarrow x\left(x+3\right)\left(x+\dfrac{5}{2}\right)\left(x+\dfrac{7}{2}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\\x+\dfrac{5}{2}=0\\x+\dfrac{7}{2}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=-\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{0;-3;-\dfrac{5}{2};-\dfrac{7}{2}\right\}\)

`@` `\text {Ans}`

`\downarrow`

`a,`

`(x - 2)(x - 3) =0`

`<=>`\(\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x=0+2\\x=0+3\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

Vậy, `S = {2; 3}`

`b,`

`x^2 - 5x = 0`

`<=> x(x - 5) = 0`

`<=>`\(\left[{}\begin{matrix}x=0\\x-5=0\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x=0\\x=0+5\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)

Vậy, `S = {0; 5}`

`c,`

`x^2 - 9 = 0`

`<=> x^2 = 0 + 9`

`<=> x^2 = 9`

`<=> x^2 = (+-3)^2`

`<=> x = +-3`

Vậy, `S = {3; -3}`

`d,`

`4x^2 - 25 = 0`

`<=> 4x^2 = 25`

`<=> x^2 = 25/4`

`<=> x^2 = (+-5/2)^2`

`<=> x = +-5/2`

Vậy,` S = {5/2; -5/2}.`

a: =>x-2=0 hoặc x-3=0

=>x=2 hoặc x=3

b: =>x(x-5)=0

=>x=0 hoặc x=5

c: =>(x-3)(x+3)=0

=>x=3 hoặc x=-3

d: =>(2x-5)(2x+5)=0

=>x=5/2 hoặc x=-5/2