cho tam giác abc vuông tại a đường cao ah.
a. Cho ac=6, bc=20. tính ah,bh
b. gọi m là hình chiếu của H lên ab. chứng minh am.ab=hb.hc
c. gọi k là hình chiêu của H lên ac. chứng minh bm+ck=bc(cos3b+ sin3b)
Mình cần cách giải hoặc lời giải chi tiết (nếu được) của câu c ạ. mình cảm ơn. không hình cũng được ạ.
c: Xét ΔAHB vuông tại H có \(cosB=\dfrac{BH}{BA}\)
Xét ΔHMB vuông tại M có \(cosB=\dfrac{MB}{BH}\)
Xét ΔABC vuông tại A có \(\left\{{}\begin{matrix}cosB=\dfrac{BA}{BC}\\cosC=\dfrac{AC}{BC}\end{matrix}\right.\)
Xét ΔCKH vuông tại K có \(cosC=\dfrac{CK}{CH}\)
Xét ΔCHA vuông tại H có \(cosC=\dfrac{CH}{CA}\)
\(cos^3C=cosC\cdot cosC\cdot cosC\)
\(=\dfrac{CA}{CB}\cdot\dfrac{CK}{CH}\cdot\dfrac{CH}{CA}=\dfrac{CK}{CB}\)
=>\(CK=CB\cdot cos^3C\)
\(cos^3B=cosB\cdot cosB\cdot cosB\)
\(=\dfrac{BH}{BA}\cdot\dfrac{MB}{BH}\cdot\dfrac{BA}{BC}=\dfrac{MB}{BC}\)
=>\(MB=BC\cdot cos^3B\)
\(BM+CK\)
\(=BC\cdot cos^3B+BC\cdot cos^3C\)
\(=BC\left(cos^3B+cos^3C\right)\)