chứng minh giá trị của mỗi biểu thức sau không phụ thuộc vào giá trị của biến
a)(x+2)2 - (x-3)2 - 10x
b)(x-1)3 - (x+2 ) (x2+x+1)-x(x-2)(x+2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)x^2-6x-2xy+12y\\=(x^2-2xy)-(6x-12y)\\=x(x-2y)-6(x-2y)\\=(x-2y)(x-6)\)
Bạn xem lại đề!
\(b\Big) (3-2x)(3+2x)+(2x+3)(2x-5)+4x\\=3^2-(2x)^2+(4x^2-10x+6x-15)+4x\\=9-4x^2+4x^2-10x+6x-15+4x\\=(9-15)+(-4x^2+4x^2)+(-10x+6x+4x)\\=-6\)
*Đã sửa đề*
\(c\Big) 4(x+1)^2+(2x-1)^2-8(x-1)(x+1)-4x\\=4(x^2+2x+1)+(2x)^2-2\cdot2x\cdot1x+1^2-8(x^2-1^2)-4x\\=4x^2+8x+4+4x^2-4x+1-8x^2+8-4x\\=(4x^2+4x^2-8x^2)+(8x-4x-4x)+(4+1+8)\\=13\)
*Đã sửa đề*
\(d\big) (3x+2)^2+(2x-7)^2-2(3x+2)(2x-7)-x^2+36x\\=[(3x+2)^2-2(3x+2)(2x-7)+(2x-7)^2]-x^2+36x\\=[(3x+2)-(2x-7)]^2-x^2+36x\\=(3x+2-2x+7)^2-x^2+36x\\=(x+9)^2-x^2+36x\\=(x+9-x)(x+9+x)+36x\\=9(2x+9)+36x\\=18x+81+36x\)
Bạn xem lại đề!
\(Toru\)
a) \(2\left(x^3+y^3\right)-3\left(x^2+y^2\right)\)
\(=2\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]-3\left[\left(x+y\right)^2-2xy\right]\)
\(=2\left(1-3xy\right)-3\left(1-2xy\right)\)
\(=2-6xy-3+6xy=-1\)
\(\Rightarrow\) Giá trị của biểu thức không phụ thuộc vào biến \(x,y\)
b) \(\dfrac{\left(x+5\right)^2+\left(x-5\right)^2}{x^2+25}\)
\(=\dfrac{x^2+10x+25+x^2-10x+25}{x^2+25}\)
\(=\dfrac{2x^2+50}{x^2+25}=\dfrac{2\left(x^2+25\right)}{x^2+25}=2\)
\(\Rightarrow\) Giá trị của biểu thức không phụ thuộc vào biến \(x\)
Thực hiện khai triển hằng đẳng thức
A = ( x 3 – 1) + ( x 3 – 6 x 2 + 12x – 8) – 2( x 3 + 1) + 6( x 2 – 2x + 1).
Rút gọn A = -5 không phụ thuộc biến x.
a) Ta có: \(\left(x-1\right)\left(x-2\right)\left(x^2+x+1\right)\left(x^2+2x+4\right)-x^6+9x^3\)
\(=\left(x-1\right)\left(x^2+x+1\right)\left(x-2\right)\left(x^2+2x+4\right)-x^6+9x^3\)
\(=\left(x^3-1\right)\left(x^3-8\right)-x^6+9x^3\)
\(=x^6-9x^3+8-x^6+9x^3=8\)
b) Ta có: \(\left(\dfrac{1}{3}+2x\right)\left(\dfrac{1}{9}-\dfrac{2}{3}x+4x^2\right)-\left(2x-\dfrac{1}{3}\right)\left(4x^2+\dfrac{2}{3}x+\dfrac{1}{4}\right)\)
\(=\dfrac{1}{27}+8x^3-8x^3+\dfrac{1}{27}\)
\(=\dfrac{2}{27}\)
c) Ta có: \(\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(1-x\right)\)
\(=x^3-3x^2+3x-1-x^3+1-3x+3x^2\)
=0
d) Ta có: \(\left(x^2-y^2\right)\left(x^2+xy+y^2\right)\left(x^2-xy+y^2\right)-x^6+y^6\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2-xy+y^2\right)-x^6+y^6\)
\(=\left(x^3-y^3\right)\left(x^3+y^3\right)-x^6+y^6\)
\(=x^6-y^6-x^6+y^6=0\)
b)\(98^2=\left(100-2\right)^2=10000-400+4=9604\)
Bài 2:
a) Ta có: \(\left(x+3\right)^2-\left(x-3\right)^2-12x\)
\(=x^2+6x+9-x^2+6x-9-12x\)
=0
b) Ta có: \(\left(x-2\right)^2-\left(x-3\right)\left(x-1\right)\)
\(=x^2-4x+4-x^2+4x-3\)
=-1
a: \(\left(x+2\right)^2-\left(x-3\right)^2-10x\)
\(=x^2+4x+4-\left(x^2-6x+9\right)-10x\)
\(=x^2-6x+4-x^2+6x-9\)
=-5
b: \(\left(x-1\right)^3-\left(x+2\right)\left(x^2+x+1\right)-x\left(x-2\right)\left(x+2\right)\)
\(=x^3-3x^2+3x-1-x^3-x^2-x-2x^2-2x-2-x\left(x^2-4\right)\)
\(=-6x^2-3-x^3+4x\)
=>Đa thức này không phụ thuộc vào biến nha bạn