phân tích đa thức thành nhân tử
\((x^2y^2-8)^2-1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)
\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
x^2 + 2y^2 - 2y - 2xy + 1 = (x^2 - 2xy + y^2) + (y^2 - 2y + 1) = (x - y)^2 + (y - 1)^2
\(x^2+2y^2-2y-2xy+1\)
\(=x^2-2xy+y^2+y^2-2y+1\)
\(=\left(x-y\right)^2+\left(y-1\right)^2\)
\(=\left(x-y\right)^2-\left(1-y\right)^2\)
\(=\left(x-y-1+y\right)\left(x-y+1-y\right)\)
\(=\left(x-1\right)\left(x-2y+1\right)\)
Bài 1 :
\(x^2-6x+8=x^2-2x-4x+8=x\left(x-2\right)-4\left(x-2\right)=\left(x-4\right)\left(x-2\right)\)
Bài 2 :
\(x^8+x^7+1=x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1-x^6-x^5-x^4-x^3-x^2-x\)
\(=x^6\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)+x^2+x+1-x^4\left(x^2+x+1\right)-x\left(x^2+x+1\right)\)
=\(\left(x^2+x+1\right)\left(x^6+x^3+1-x^4-x\right)\)
Tick đúng nha
8: \(=\left(x-2y\right)\cdot x\cdot\left(x+3\right)\)
9: \(=\left(5x+2\right)\left(x-3\right)-x\left(x-3\right)\)
\(=\left(x-3\right)\left(4x+2\right)\)
=2(2x+1)(x-3)
3: \(=2\left(x+2\right)\left(25x-15-x\right)\)
\(=2\left(x+2\right)\left(24x-15\right)\)
=6(x+2)(8x-5)
\(x^2-y^2-2y-1\\ =x^2-\left(y+1\right)^2\\ =\left(x-y-1\right)\left(x+y+1\right)\)
câu b sai r
\(\dfrac{1}{3}xy+x^2z+xz=3x\left(\dfrac{1}{9}y+\dfrac{1}{3}xz+\dfrac{1}{3}z\right)\)
Lời giải:
a.
$=\frac{1}{2}(x^2-4y^2)=\frac{1}{2}[x^2-(2y)^2]=\frac{1}{2}(x-2y)(x+2y)$
b.
$=\frac{1}{3}x(y+3xz+3z)$
c.
$=\frac{2}{25}x(225x^2-4)=\frac{2}{25}(15x-2)(15x+2)$
d.
$=\frac{1}{5}x^2(2+25x+5y)$
\((x^2y^2-8)^2-1\\=(x^2y^2-8)^2-1^2\\=(x^2y^2-8-1)(x^2y^2-8+1)\\=(x^2y^2-9)(x^2y^2-7)\\=[(xy)^2-3^2](x^2y^2-7)\\=(xy-3)(xy+3)(x^2y^2-7)\)
`#3107.101107`
`(x^2y^2 - 8)^2 - 1`
`= (x^2y^2 - 8)^2 - 1^2`
`= (x^2y^2 - 8 - 1)(x^2y^2 - 8 + 1)`
`= (x^2y^2 - 9)(x^2y^2 - 7)`
`= (x^2y^2 - 3^2)(x^2y^2 - 7)`
`= (xy - 3)(xy + 3)(x^2y^2 - 7)`
____
Sử dụng hđt:
`A^2 - B^2 = (A - B)(A + B).`