Chứng minh rằng x^2+y^2+1>=xy+x+y với mọi x,y
x^2-2xy+6y^2-12x+2y+45>=4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow x^2-2.3.x+9+1=\left(x-3\right)^2+1\Rightarrow\hept{\begin{cases}\left(x-3\right)^2\ge0\\1>0\end{cases}}\Rightarrow\left(x-3\right)^2+1>0\)
\(\Leftrightarrow x^2-2.\frac{3}{2}.x+\frac{9}{4}+\frac{7}{4}=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\Leftrightarrow\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2\ge0\\\frac{7}{4}>0\end{cases}}\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\)
\(\Leftrightarrow2.\left(x^2+xy+y^2+1\right)=x^2+2xy+y^2+x^2+y^2+2=\left(x+y\right)^2+x^2+y^2+2\)
ta có \(\left(x+y\right)^2\ge0,x^2\ge0,y^2\ge0,2>0\Rightarrow\left(x+y\right)^2+x^2+y^2+2>0\)
\(\Leftrightarrow x^2-2xy+y^2+x^2-2.1x+1+y^2+2.2.y+4+3\)\(=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3\)
Ta có \(=\left(x-y\right)^2\ge0,\left(x-1\right)^2\ge0,\left(y+2\right)^2\ge0,3>0\)\(\Rightarrow=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3>0\)
T i c k cho mình 1 cái nha mới bị trừ 50 đ
\(A=x^2+2y^2-2xy+4x-6y+6\)
\(=\left(x^2-2xy+y^2\right)+\left(x^2+4x+4\right)+\left(y^2-6y+9\right)-7\)
\(=\left(x-y\right)^2+\left(x+2\right)^2+\left(y-3\right)^2-7\)
Đề hình như có gì đó không đúng
Ta có: \(A=x^2+2y^2-2xy+4x-6y+6=\left(x^2-2xy+y^2\right)\) \(+4\left(x-y\right)+4+y^2-2y+1+1=\left[\left(x-y\right)^2+4\left(x-y\right)+4\right]\)\(+\left(y-1\right)^2+1=\left(x-y+2\right)^2+\left(y-1\right)^2+1\)
Ta có: \(\left(x-y+2\right)^2\ge0\forall x,y\); \(\left(y-1\right)^2\ge0\forall y\)nên \(\left(x-y+2\right)^2+\left(y-1\right)^2+1>0\forall x,y\)
Vậy \(A=x^2+2y^2-2xy+4x-6y+6>0\forall x,y\)(đpcm)
Câu a, b, c thì đơn giản òi. Câu d phải chú ý điểm rơi:v
d) Ta có: \(D=\left(x-\frac{1}{2}\right)^4+\frac{1}{2}\left(3x^2-3x+\frac{15}{8}\right)\)
\(=\left(x-\frac{1}{2}\right)^4+\frac{3}{2}\left(x-\frac{1}{2}\right)^2+\frac{9}{16}\ge\frac{9}{16}\)
Đẳng thức xảy ra khi x = 1/2
\(x^2-2xy-x+1+2y^2=x^2-x\left(2y+1\right)+\frac{\left(2y+1\right)^2}{4}-\frac{\left(2y+1\right)^2}{4}+2y^2+1\)
\(=\left(x-\frac{2y+1}{2}\right)^2+\frac{1}{4}\left(2y-1\right)^2+\frac{1}{2}>0\)
Lời giải:
Xét hiệu:
$x^2+4y^2+9-2xy-3x-6y$
$=\frac{1}{2}(x^2+4y^2-4xy)+\frac{1}{2}(x^2-6x+9)+\frac{1}{2}(4y^2-12y+9)$
$=\frac{1}{2}(x-2y)^2+\frac{1}{2}(x-3)^2+\frac{1}{2}(2y-3)^2$
$\geq 0$ với mọi $x,y\in\mathbb{R}$
$\Rightarrow x^2+4y^2+9\geq 2xy+3x+6y$
Ta có đpcm
Dấu "=" xảy ra khi $x=3; y=\frac{3}{2}$
\(a.x^2-2xy+6y^2-12x+2y+41\)
\(=x^2-2xy+y^2-12x+12y+36+5y^2-10y+5\)
\(=\left(x-y\right)^2-2.6\left(x-y\right)+36+5\left(y-1\right)^2\)
\(=\left(x-y-6\right)^2+5\left(y-1\right)^2\) ≥ \(0\)
\(b.\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}-\dfrac{2x}{y}-\dfrac{2y}{x}+3\)
\(=\dfrac{x^2}{y^2}-2.\dfrac{x}{y}+1+\dfrac{y^2}{x^2}-2.\dfrac{y}{x}+1+1\)
\(=\left(\dfrac{x}{y}-1\right)^2+\left(\dfrac{y}{x}-1\right)^2+1>0\)