cho tứ diện ABCD. Gọi M,N lần lượt là trung điểm DC, BC. Xác định vị trí tương đối của cặc cặp đường thẳng với mặt phẳng sau
a) MN và (ABD)
b) AM và (BCD)
c) AN và (ABC)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔSBC có SH/SB=SK/SC=1/2
nên HK//BC
mà \(BC\subset\left(ABC\right)\); HK không nằm trong mp(ABC)
nên HK//(ABC)
b: \(K\in SC\subset\left(SBC\right);K\in AK\)
Do đó: \(K\in AK\cap\left(SBC\right)\)
mà \(A\notin\left(SBC\right)\)
nên \(K=AK\cap\left(SBC\right)\)
c: \(A\in\left(SAB\right);H\in SB\subset\left(SAB\right)\)
Do đó: \(AH\subset\left(SAB\right)\)
a: Xét ΔSAC có M,N lần lượt là trung điểm của SA,SC
=>MN là đường trung bình của ΔSAC
=>MN//AC
mà MN không thuộc mp(ABCD) và \(AC\subset\left(ABCD\right)\)
nên MN//(ABCD)
b: \(A\in AN;A\in\left(ABD\right)\)
=>\(A\in AN\cap\left(ABD\right)\)
mà \(N\in SC\) không thuộc mp(ABD)
nên \(A=AN\cap\left(ABD\right)\)
c: \(S\in\left(SAC\right);E\in AC\subset\left(SAC\right)\)
Do đó: \(SE\subset\left(SAC\right)\)
a: Xét ΔCBD có M,N lần lượt là trung điểm của CD,CB
=>MN là đường trung bình của ΔCBD
=>MN//BD
mà \(BD\subset\left(ABD\right)\) và MN không nằm trong mp(ABD)
nên MN//(ABD)
b: Chọn mp(ACD) có chứa AM
\(CD\subset\left(ACD\right);CD\subset\left(BCD\right)\)
Do đó: \(\left(ACD\right)\cap\left(BCD\right)=CD\)
Ta có: \(M=AM\cap CD\)
=>M là giao điểm của AM với mp(BCD)
=>AM cắt mp(BCD) tại M
c: \(N\in BC\subset\left(ABC\right);A\in\left(ABC\right)\)
Do đó: \(AN\subset\left(ABC\right)\)