Cho A = \(\frac{6n+2012}{3n+5}\)(n\(\in\)Z)
Tìm n để
a, A \(\in\)Z
b, A đạt giá trị nhỏ nhất
c, A đạt giá trị lớn nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho A= 6n+2022/3n+5 ( với n là số tự nhiên)
Tìm n để A đạt giá trị lớn nhất . Tìm giá trị lớn nhất đó
\(B=\frac{6n-5}{3n+1}\inℤ\)
=> 6n - 5 ⋮ 3n + 1
=> 6n + 2 - 7 ⋮ 3n + 1
=> 3(3n + 1) - 7 ⋮ 3n + 1
=> 7 ⋮ 3n + 1
=> 3n + 1 thuộc Ư(7)
=> 3n + 1 thuộc {-1; 1; -7; 7}
=> 3n thuộc {-2; 0; -8; 6}
=> n thuộc {0; 2} vì n thuộc Z
a) Để \(B\inℤ\)
\(\Rightarrow\left(6n-5\right)⋮\left(3n+1\right)\)
\(\Rightarrow\left(6n+2-7\right)⋮\left(3n+1\right)\)
\(\Rightarrow2.\left(3n+1\right)-7⋮\left(3n+1\right)\)
Vì \(2.\left(3n+1\right)⋮\left(3n+1\right)\)
nên \(-7⋮3n+1\)
\(\Rightarrow3n+1\inƯ_{\left(-7\right)}\)
\(\Rightarrow3n+1\in\left\{1;-1;7;-7\right\}\)
Lập bảng xét 4 trường hợp ta có :
\(3n+1\) | \(1\) | \(-1\) | \(7\) | \(-7\) |
\(n\) | \(0\) | \(-\frac{2}{3}\) | \(2\) | \(-\frac{8}{3}\) |
Vậy \(n\in\left\{0;2\right\}\)
Ta có:A=6n-1/3n+2= (6n+4)-5/3n+2=2+5/3n+2
=> Đẻ Acó gtri nguyên thì 5 phải chia hết cho 3n+2
=> 3n+2 thuộc U(5)=(1,5,-5,-1)
ta có bảng sau:( bạn tự kẻ nhé : theo hàng ngang 1 cột là "3n+2" cột dưới là "n"
Vì n thuộc Z nên n= -1
a, A = \(\frac{3n-1}{n-2}=\frac{3n-6+5}{n-2}=\frac{3\left(n-2\right)+5}{n-2}=3+\frac{5}{n-2}\)
Để A thuộc Z <=> n - 2 thuộc Ư(5) = {1;-1;5;-5}
Ta có: n - 2 = 1 => n = 3
n - 2 = -1 => n = 1
n - 2 = 5 => n = 7
n - 2 = -5 => n = -3
Vậy n = {3;1;7;-3}
b, A = \(\frac{3n-1}{n-2}=\frac{3n-6+5}{n-2}=\frac{3\left(n-2\right)+5}{n-2}=3+\frac{5}{n-2}\)
Để A đạt giá trị nhỏ nhất <=> \(\frac{5}{n-2}\) đạt giá trị nhỏ nhất
=> n - 2 đạt giá trị lớn nhất (n - 2 \(\ne\)0 ; n - 2 < 0)
=> n - 2 = -1 => n = 1
Vậy để A có giá trị nhỏ nhất thì n = 1
c, \(\frac{3n-1}{n-2}=\frac{3n-6+5}{n-2}=\frac{3\left(n-2\right)+5}{n-2}=3+\frac{5}{n-2}\)
Để A đạt giá trị lớn nhất <=> \(\frac{5}{n-2}\)đạt giá trị lớn nhất
=> n - 2 đạt giá trị nhỏ nhất (n - 2 \(\ne\)0 ; n - 2 > 0)
=> n - 2 = 1 => n = 3
Vậy để A đạt giá trị lớn nhất thì n = 3